Applications of Group Theory

Sheet 10			
Exercises	Fri	10:00 - 11:30	РНҮ 5.0.21
	Thu	10:00 - 11:30	PHY 9.1.09
Lectures	Tue	10:00 - 11:30	PHY 9.1.09

1. Quaternion algebra

Quaternions are the most natural way to treat double groups. The product of two quaternions is given by:

 $\llbracket a, \mathbf{A} \rrbracket \llbracket b, \mathbf{B} \rrbracket = \llbracket ab - \mathbf{A} \cdot \mathbf{B}, a\mathbf{B} + b\mathbf{A} + \mathbf{A} \times \mathbf{B} \rrbracket$

This exercise is meant to get more familiar with the algebra of these numbers.

- 1. Prove the associative property of the quaternion product.
- 2. Prove that the product of two pure quaternions is a pure quaternion only if their corresponding (pseudo-) vectors are orthogonal. Interpret the result in terms of binary rotations.
- 3. Consider the quaternions $\mathbb{A} = [a, \mathbf{A}]$ and $\mathbb{B} = [b, \mathbf{B}]$ with the conjugation prescription $\mathbb{A}^* = [a, -\mathbf{A}]$. Prove that $(\mathbb{AB})^* = \mathbb{B}^* \mathbb{A}^*$.
- 4. Prove that the product of two normalized quaternions is a normalized quaternion.
- 5. Prove that \mathbb{A} is a pure quaternion if and only if

 $\mathbb{A}^* = -\mathbb{A}.$

2. Multiplication tables of double groups

Using the quaternion algebra calculate the multiplication tables for the groups \overline{D}_2 and \overline{C}_3 . Verify explicitly the validity of the Opechowski's rules in the construction of the class system for the two aforementioned double groups.

Frohes Schaffen!