Applications of Group Theory

Lectures
Exercises

Tue	10:00-11:30	PHY 9.1.09
Thu	$10: 00-11: 30$	PHY 9.1.09
Fri	$10: 00-11: 30$	PHY 5.0.21

Sheet 4

1. Characters of the dihedral group D_{n}

Consider the generic proper group D_{n} which has a principal rotational axis C_{n} and n distinct dihedral axes C_{2}^{\prime}.

1. Identify the conjugation classes of D_{n}. In particular, prove that the number of classes is $N_{c}=\frac{n+6}{2}$ for even n, while $N_{c}=\frac{n+3}{2}$ for odd n.
2. Prove that dihedral groups only admit irreducible representations of dimension 1 and 2. Prove, moreover:

$$
\begin{array}{lll}
n_{1}=4, & n_{2}=\frac{n-2}{2}, & \text { for even } n \\
n_{1}=2, & n_{2}=\frac{n-1}{2}, & \text { for odd } n
\end{array}
$$

where n_{i} is the number of irreducible representation with dimension $i=1,2$.
3. Prove that, for every one dimensional representation it holds: $\chi\left(C_{n}\right)= \pm 1$ and $\chi\left(C_{2}^{\prime}\right)= \pm 1$. Conclude, by means of the orthogonality relation of the characters that, for the one dimensional representations it holds:

even n	C_{n}	$C_{2 a}^{\prime}$	$C_{2 b}^{\prime}$
A_{1}	1	1	1
A_{2}	1	-1	-1
B_{1}	-1	1	-1
B_{2}	-1	-1	1

odd n	C_{n}	C_{2}^{\prime}
A_{1}	1	1
A_{2}	1	-1

4. Let $\omega:=e^{2 i \pi / n}$ and let $h \in \mathbb{Z}$. Consider the mappings $\rho^{h}: D_{n} \rightarrow G L_{2}(\mathbb{C})\left(G L_{2}(\mathbb{C})\right.$ is the group of invertible 2×2 complex matrices):

$$
\rho^{h}\left(C_{n}^{k}\right)=\left(\begin{array}{cc}
\omega^{h k} & 0 \\
0 & \omega^{-h k}
\end{array}\right), \quad \rho^{h}\left(C_{n}^{k} C_{2}^{\prime}\right)=\left(\begin{array}{cc}
0 & \omega^{h k} \\
\omega^{-h k} & 0
\end{array}\right)
$$

with $k=1,2, \ldots n$.
Prove that ρ^{h} for $h=1, \ldots, \frac{n-2}{2}$ or $\frac{n-1}{2}$ are 2 dimensional irreducible representations of D_{n} respectively for even and odd n. Calculate the corresponding character sets.
Hint: Prove that ρ^{h} is a homomorphism, thus giving it the status of representation of D_{n}. Prove moreover that ρ^{h} is isomorphic to ρ^{n-h} and ρ^{n+h}, to restrict the range of h. Finally prove that ρ^{0} and, for even n, $\rho^{n / 2}$ are reducible representations.

Frohes Schaffen!

