Applications of Group Theory

	Sheet 4		
Exercises	Fri	10:00 - 11:30	PHY 5.0.21
Lectures	Tue Thu	10:00 - 11:30 10:00 - 11:30	PHY 9.1.09 PHY 9.1.09
T		10.00 11.00	DITLOADO

1. Characters of the dihedral group D_n

Consider the generic proper group D_n which has a principal rotational axis C_n and n distinct dihedral axes C'_2 .

- 1. Identify the conjugation classes of D_n . In particular, prove that the number of classes is $N_c = \frac{n+6}{2}$ for even n, while $N_c = \frac{n+3}{2}$ for odd n.
- 2. Prove that dihedral groups only admit irreducible representations of dimension 1 and 2. Prove, moreover:

$$n_1 = 4, \quad n_2 = \frac{n-2}{2}, \quad \text{for even } n,$$

 $n_1 = 2, \quad n_2 = \frac{n-1}{2}, \quad \text{for odd } n,$

where n_i is the number of irreducible representation with dimension i = 1, 2.

3. Prove that, for every one dimensional representation it holds: $\chi(C_n) = \pm 1$ and $\chi(C'_2) = \pm 1$. Conclude, by means of the orthogonality relation of the characters that, for the one dimensional representations it holds:

$\operatorname{even} n$	C_n	C'_{2a}	C'_{2b}				
A_1	1	1	1		$\operatorname{odd} n$	C_n	C'_2
A_2	1	-1	-1	-	A_1	1	1
B_1	-1	1	-1	-	A_2	1	-1
B_2	-1	-1	1				

4. Let $\omega := e^{2i\pi/n}$ and let $h \in \mathbb{Z}$. Consider the mappings $\rho^h : D_n \to GL_2(\mathbb{C})$ ($GL_2(\mathbb{C})$ is the group of invertible 2 x 2 complex matrices):

$$\rho^{h}(C_{n}^{k}) = \begin{pmatrix} \omega^{hk} & 0\\ 0 & \omega^{-hk} \end{pmatrix}, \qquad \rho^{h}(C_{n}^{k}C_{2}') = \begin{pmatrix} 0 & \omega^{hk}\\ \omega^{-hk} & 0 \end{pmatrix}$$

with k = 1, 2, ... n.

Prove that ρ^h for $h = 1, \ldots, \frac{n-2}{2}$ or $\frac{n-1}{2}$ are 2 dimensional irreducible representations of D_n respectively for even and odd n. Calculate the corresponding character sets.

Hint: Prove that ρ^h is a homomorphism, thus giving it the status of representation of D_n . Prove moreover that ρ^h is isomorphic to ρ^{n-h} and ρ^{n+h} , to restrict the range of h. Finally prove that ρ^0 and, for even n, $\rho^{n/2}$ are reducible representations.

Frohes Schaffen!