Applications of Group Theory

Lectures	Tue Thu	10:15 - 11:45 10:15 - 11:45	
Exercises	Fri	10:15 - 11:45	PHY 5.0.21
Sh	eet 2		

1. Groups of prime-number order

Prove that all groups with order equal to a prime number n are isomorphic to the cyclic group C_n .

2. Matrix representations

In the lecture we have introduced the homomorphism connecting point symmetry groups to groups of 3x3 matrices representing linear mappings of \mathbb{R}^3 into itself. Moreover we related the latter to a group of functionals which can eventually be mapped into a matrix group once a vectorial space invariant under the functionals group is introduced. Let us now consider concrete examples:

- 1. Construct the matrix representative of the point symmetry operation C_4^+ , *i.e.* the anticlockwise rotation of $\pi/2$ with respect of the z axis, within \mathbb{R}^3 .
- 2. Consider the associated function operator \hat{C}_4^+ and find the transformed function for each of the 5 atomic orbitals of the 3d subshell. Find the associated matrix representation of the point symmetry operation in the Hilbert space generated by these orbitals.
- 3. Repeat the first two steps for all the elements of the cyclic group C_4 . Are the corresponding representations reducible or irreducible?
- 4. Find the matrix representation of the dihedral group D_4 in the Hilbert space of the 3d subshell and calculate the size of the irreducible representations.

3. Group of the Hamiltonian

Consider the linear hermitian operator \hat{H} that maps a given Hilbert space \mathcal{H} into itself. Prove that the set of all linear, regular operators \hat{R} defined on the same Hilbert space and with the property $[\hat{R}, \hat{H}] = 0$ form a group. Take as binary composition the usual multiplication between operators.

Frohes Schaffen!