Applications of Group Theory

Sheet 1			
Exercises	Fri	10:15 - 11:45	PHY 5.0.21
Lectures	Tue Thu	10:15 - 11:45 10:15 - 11:45	PHY 9.1.09 PHY 9.1.09

1. Cyclic groups

A group is generally defined as a set of elements \mathcal{G} and a binary composition (·) satisfying the four properties: i) Closure of \mathcal{G} with respect to the binary composition; ii) Existence of the identity element; iii) Validity of the associative law; iv) Existence of the inverse of each element of \mathcal{G} inside the set \mathcal{G} itself. Consider an element (e.g. a symmetry operation) g and a binary composition (·) that allows you to construct the sequence $g_1 \equiv g, g_2 \equiv g \cdot g, g_3 \equiv g \cdot g \cdot g, \ldots$ Further assume that $g_n \cdot g = g$ with a particular $n \in \mathbb{N}$.

- 1. Prove that the set $\{g_1, g_2, \ldots, g_n\}$ with the operation (\cdot) is a group by explicitly verifying the four defining axioms listed above.
- 2. Prove that for any group of finite order the existence of an inverse is a consequence of the other three axioms defining a group.

2. Groups of order 4

- 1. List all possible point groups of order 4, write their projection diagrams and multiplication tables. Find the isomorphisms.
- 2. Prove that, in general, there are only 2 different groups of order 4 which are not isomorph. Construct the multiplication tables of these two groups, $\mathcal{G}_4^{(1)}$ and $\mathcal{G}_4^{(2)}$. Hints: Start with the multiplication table of C_4 i.e. the cyclic group of order 4. How many elements of C_4 are equal to their inverse? Now try to construct further groups in which a different number of elements are equal to their own inverse. Remember to fulfil the rearrangement theorem. It is a bit like sudoku!

Frohes Schaffen!