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1. Nakajima-Zwanzig in interaction picture

Consider a system-bath described by the Hamiltonian:

H = HS +HB +HT

where [HS , NS ] = [HB , NB ] = 0 being NS and NB respectively the system and bath number operators. More-
over, assume a the tunnelling Hamiltonian HT of the form:

HT = t
∑
ikσ

c†kσdiσ + h.c.

where c†kσ creates a particle with spin σ and momentum k in the bath and diσ destroys a particle with spin
σ in the system orbital i. Prove that, if the total density matrix is factorized at the time t = 0 in which all
representations coincide (i.e. ρ(0) = ρS ⊗ ρB with ρB the thermal equilibrium density operator) the following
relation holds:

P ρ̇I(t) =

∫ t

0

dsPLT,I(t)GQ,I(t, s)LT,I(s)PρI(s)

where

GQ,I(t, s) = T← exp

[∫ t

s

dt′QLT,I(t′)
]
,

P[•] = TrB{•} ⊗ ρB , Q = 1− P, and LT,I(t)[•] = − i
~ [HT,I(t), •].

2. Single electron transistor (SET)

Consider the device shown in the figure below. A quantum dot is coupled to three electrodes. In particu-
lar, we assume that the quantum dot can exchange electrons with the source and drain electrodes via tunnelling
processes, while coupling with the gate only capacitive. It is the simplest example of single electron transistor.
In first approximation one can describe the system via the two baths Anderson impurity Hamiltonian introduced
in the previous sheet. The bias through the system is associated to the difference in the chemical potential of
the leads by the relation eVb = µL−µR, where e is the electron charge. The potential drop across the structure
depends on the capacitive coupling between the dot and the leads. We introduce the effect of the gate via a
modification of the Hamiltonian for the impurity:

HS =
∑
σ

(εd + eαgVg) d
†
σdσ + Un↑n↓,
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where e is the electron charge, Vg is the electrostatic potential of the gate electrode and αg describes the strength
of the capacitive coupling.

1. Assume that the electrostatic potential drops symmetrically at the interface between the quantum dot
(QD) and the source and between the QD and the drain. Determine for which bias and gate voltages
current is flowing/not flowing through the system. Plot the results as lines in a bias vs. gate voltage
plane. Consider the lowest non vanishing perturbative limit in the tunnelling.

Hint: In the limit proposed by the exercise the current can flow only via sequential tunnelling events
separately at the source and at the drain. Use energy conservation for each event separately to determine
the requested conditions on the gate and the bias.

2. Write the master equation for the SET. Verify that the conditions derived at the previous point are the
same that make the Fermi functions present in the equations turn from 0 to 1 or vice versa. Why?

3. In the Sheet 6 we have already interpreted the equilibrium of the Anderson impurity in terms of its free
energy. Try to do the same also for the non equilibrium situation considered here.

Hint: Start representing the equilibrium free energy of the single electron transistor F = H − µ0N with
µ0 = µS+µD

2 as a function of the particle number of the quantum dot. Current is flowing through the
system when there is a loop of energetically allowed transitions connecting states with different particle
number...

4. Typically, at low biases, the current does not flow through the SET and the number of electrons is fixed
on the quantum dot. By sweeping the gate voltage one can, though change the electron number one by
one. Determine the gates at which the number of electrons changes in the quantum dot and calculate the
conductance for those “resonant” conditions.

Hint: Use the fact that, for a two terminal device ID = −IS and define the current as I = (IS − ID)/2.

5. The phenomenon that you just rediscovered in the previous point is know as “Coulomb blockade”. What
happens if U = 0? Do you think that the name is justified?

6. Write a program that calculates the stationary current across the single level quantum dot described so
far as a function of bias and gate voltage. Plot the result as a three dimensional map. Make the three
dimensional map also for the differential conductance

G(Vb, Vg) ≡
dI(Vb, Vg)

dVb

and the populations of the different many-body states of the quantum dot. Comment the result.
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