Quantum theory of condensed matter I

Sheet 10			
Dr. Ivan Dmitriev	Tue	12:00 - 14:00	9.2.01
PD Dr. Andrea Donarini	Tue Thu	10:00 - 12:00 10:00 - 12:00	H33 H33

1. Diffusion, velocity autocorrelation function, classical propagator, and classical Kubo formula

Your aim is to show that the results obtained in the 1st lecture of Week 9 and in Sheet 8 can be reproduced using the velocity auto-correlation function $w_{\alpha\beta}(t) = \langle v_{\alpha}(t)v_{\beta}(0) \rangle$: i.e. the classical analogue of the Kubo formula for a 2D electron gas at zero temperature reads $\hat{\sigma}(\omega) = e^2 \nu \hat{D}(\omega)$, where ν is the density of states at the Fermi level, the diffusion tensor $D_{\alpha\beta}(\omega) = \int_0^\infty dt \exp(i\omega t) \langle v_{\alpha}(t)v_{\beta}(0) \rangle$, indices α, β denote x or y directions and angular brackets denote the average over ensemble, i.e. over disorder realizations and angles, as specified below.

1. Consider a 2D electron gas at zero temperature and perpendicular magnetic field. Find the classical propagator $G(\phi, t; \phi_0, t_0)$, – the conditional probability to find particle at the Fermi surface with velocity $\mathbf{v} = v_F \mathbf{n}_{\phi}$, where the unit vector $\mathbf{n}_{\phi} = (\cos \phi, \sin \phi)^T$, provided at $t = t_0$ it has velocity $\mathbf{v}_0 = v_F \mathbf{n}_{\phi_0}$. The Boltzmann equation for the propagator reads

$$(\partial_t + \omega_c \partial_\phi + \operatorname{St})G(\phi, t; \phi_0, t_0) = 2\pi\delta(\phi - \phi_0)\delta(t - t_0).$$

Hints: Recall that the collision operator is diagonal in the eigen basis of ∂_{ϕ} , i.e. $\widehat{\operatorname{St}}\{e^{in\phi}\} = -\tau_n^{-1}e^{in\phi}$, while $2\pi\delta(\phi) = \sum_{n=-\infty}^{\infty} \exp(in\phi)$. Seek for the solution in the form $G = \sum_{n=-\infty}^{\infty} g_n(t-t_0)\theta(t-t_0)\exp[in(\phi-\phi_0)]$, where $\theta(t)$ is the step function. **3 Points**)

2. The propagator G fully describes the stochastic classical dynamics in the ensemble-averaged disordered system. In particular, the velocity autocorrelation function is given by

$$D_{\alpha\beta}(t) = v_F^2 \langle \langle n_\alpha(\phi) G(\phi, t; \phi_0, t_0) n_\beta(\phi_0) \rangle \rangle_{\phi, \phi_0},$$

where angular brackets denote angular averages. Find the diffusion tensor D(t) as well as the correspondent dynamic conductivity in magnetic field given by $\hat{\sigma}(\omega) = e^2 \nu \hat{D}(\omega) = e^2 \nu \int_{-\infty}^{\infty} dt \hat{D}(t) \exp(i\omega t)$. Hints: You will find it easier to deal with $v_{\pm}(t) = \langle v_x(t) \pm i v_y(t) \rangle_{\phi} = v_F \langle G(\phi, t; \phi_0, t_0) \exp(\pm i\phi) \rangle_{\phi}$, which will give directly $D_{xx} \pm i D_{yx}$ etc. (2 Points)

2. Wick's theorem

1. Show that, for a system of non-interacting fermions described by the Hamiltonian in the energy basis

$$\hat{H} = \sum_{\alpha} \epsilon_{\alpha} \hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha} \left(= \sum_{i=1}^{N} \hat{h}_{i} \right),$$

the following relation for the many-body grandcanonical expectation value holds:

$$\langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \rangle = \langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}_{\alpha_4} \rangle \langle \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \rangle \delta_{\alpha_1 \alpha_4} \, \delta_{\alpha_2 \alpha_3} - \langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}_{\alpha_3} \rangle \langle \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_4} \rangle \delta_{\alpha_1 \alpha_3} \, \delta_{\alpha_2 \alpha_4},$$

where

$$\langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \rangle \equiv \frac{1}{Z} \operatorname{Tr} \left\{ \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \exp\left[-\beta(H-\mu N)\right] \right\}$$

and Z is the grandcanonical partition function. The trace is taken over the full Fock space. Hint: Consider the use of the eigenbasis of \hat{h} . (2 Points)

2. Derive from 2.1 that, for noninteracting fermions, in every other single particle basis $\{|n\rangle\}$ the following relation holds:

$$\langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_2}^{\dagger} \hat{c}_{n_3} \hat{c}_{n_4} \rangle = \langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_4} \rangle \langle \hat{c}_{n_2}^{\dagger} \hat{c}_{n_3} \rangle - \langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_3} \rangle \langle \hat{c}_{n_2}^{\dagger} \hat{c}_{n_4} \rangle.$$

Note that this is valid even if in this basis the Hamiltonian

$$\hat{H} = \sum_{n,m} h_{nm} \hat{c}_n^{\dagger} \hat{c}_m$$

contains non-diagonal terms, h_{nm} for $n \neq m$. Hint: Diagonalize H first, using a unitary transformation $\hat{c}_n = \sum_{\alpha} u_{n\alpha} \hat{c}_{\alpha}$. Apply the equation proven in 2.1. Use, e.g., the fact that $\partial \langle \hat{n}_{\alpha} \rangle / \partial \epsilon_{\beta} = 0$ for $\alpha \neq \beta$, together with $\langle \hat{n}_{\alpha} \rangle = -\beta^{-1} \partial \ln Z / \partial \epsilon_{\alpha}$. Perform the canonical transformation in the reverse direction. (3 Points)

3. Double site Hubbard model (oral)

The Hubbard Hamiltonian for a two site system reads explicitly:

$$\begin{aligned} \hat{H} &= \epsilon_0 \left(\hat{c}^{\dagger}_{1\uparrow} \hat{c}_{1\uparrow} + \hat{c}^{\dagger}_{1\downarrow} \hat{c}_{1\downarrow} + \hat{c}^{\dagger}_{2\uparrow} \hat{c}_{2\uparrow} + \hat{c}^{\dagger}_{2\downarrow} \hat{c}_{2\downarrow} \right) + t \left(\hat{c}^{\dagger}_{1\uparrow} \hat{c}_{2\uparrow} + \hat{c}^{\dagger}_{2\downarrow} \hat{c}_{1\downarrow} + \hat{c}^{\dagger}_{2\uparrow} \hat{c}_{1\uparrow} + \hat{c}^{\dagger}_{1\downarrow} \hat{c}_{2\downarrow} \right) \\ &+ U \left(\hat{c}^{\dagger}_{1\uparrow} \hat{c}_{1\uparrow} \hat{c}^{\dagger}_{1\downarrow} \hat{c}_{1\downarrow} + \hat{c}^{\dagger}_{2\uparrow} \hat{c}_{2\uparrow} \hat{c}^{\dagger}_{2\downarrow} \hat{c}_{2\downarrow} \right). \end{aligned}$$

1. Calculate the two particle eigenenergies analytically. Treat the case of parallel and antiparallel spin separately. Assume a fixed t < 0 and plot the results as a function of U/t.

Hint: For the antiparallel case consider the basis of the corresponding Hilbert space:

$$\hat{c}^{\dagger}_{1\uparrow}\hat{c}^{\dagger}_{1\downarrow}|0\rangle, \quad \hat{c}^{\dagger}_{2\uparrow}\hat{c}^{\dagger}_{2\downarrow}|0\rangle, \quad \hat{c}^{\dagger}_{1\uparrow}\hat{c}^{\dagger}_{2\downarrow}|0\rangle, \quad \hat{c}^{\dagger}_{2\uparrow}\hat{c}^{\dagger}_{1\downarrow}|0\rangle$$

Calculate the matrix elements of \hat{H} in this basis and diagonalize the resulting 4×4 matrix.

2. Calculate the ground state in the Hartree-Fock approximation and compare it with the exact result from 3.1.

Frohes Schaffen!