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1. Diffusion, velocity autocorrelation function, classical propagator, and classical
Kubo formula

Your aim is to show that the results obtained in the 1st lecture of Week 9 and in Sheet 8 can be repro-
duced using the velocity auto-correlation function wag(t) = (va(t)vs(0)): ie. the classical analogue of the
Kubo formula for a 2D electron gas at zero temperature reads 6(w) = ezyﬁ(w), where v is the density of
states at the Fermi level, the diffusion tensor Dag(w) = [ dt exp(iwt)(va(t)v(0)), indices o, B denote z or y
directions and angular brackets denote the average over ensemble, i.e. over disorder realizations and angles, as
specified below.

1. Consider a 2D electron gas at zero temperature and perpendicular magnetic field. Find the classical
propagator G(o, t; ¢, o), — the conditional probability to find particle at the Fermi surface with velocity
v = vpny, where the unit vector ng = (cos ¢, sin #)T, provided at t = t, it has velocity vy = vrhg,. The
Boltzmann equation for the propagator reads

(O + we0yp + St)G(¢, t; b0, to) = 216(¢ — p0)3(t — to).

Hints: Recall that the collision operator is diagonal in the eigen basis of 8, i.c. St{e?} = —71ei"? while
216(p) = Y.~ exp(ing). Seek for the solution in the form G =" g,(t — to)0(t — to) explin(¢ —
¢0)], where 6(t) is the step function. 3 Points)

2. The propagator G fully describes the stochastic classical dynamics in the ensemble-averaged disordered
system. In particular, the velocity autocorrelation function is given by

Dap(t) = vi{(na(6)G(¢,t; b0, t0)n5(d0))) 6,60

where angular brackets denote angular averages. Find the diffusion tensor D(t) as well as the correspondent
A~ oo A
dynamic conductivity in magnetic field given by 6(w) = e?vD(w) = e?v [ dtD(t)exp(iwt). Hints: You
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will find it easier to deal with vy (t) = (v, (t) £ ivy(t))s = vr(G(®,1; ¢o, to) exp(Ei¢))y, which will give
directly Dy, £ Dy, ete. (2 Points)

2. Wick’s theorem

1. Show that, for a system of non-interacting fermions described by the Hamiltonian in the energy basis

N
H=> catlia <: > h) :
[e7 =1
the following relation for the many-body grandcanonical expectation value holds:
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where
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<éa1 ALQ CasCay) = 7 Tr {éllélz CasCay xp[—B(H — MN)]}
and Z is the grandcanonical partition function. The trace is taken over the full Fock space. Hint: Consider
the use of the eigenbasis of h. (2 Points)

2. Derive from 2.1 that, for noninteracting fermions, in every other single particle basis {|n)} the following
relation holds:
(Ch, Chatnalny) = (EhyEn,)(ehyny) = (el Eng)(hyns)
Note that this is valid even if in this basis the Hamiltonian
H=> hymélém
n,m
contains non-diagonal terms, Ay, for n # m. Hint: Diagonalize H first, using a unitary transformation
Cn = D, UnaCa- Apply the equation proven in 2.1. Use, e.g., the fact that 0(n,)/0eg = 0 for a # f,

together with (f,) = —3710In Z/0e, . Perform the canonical transformation in the reverse direction.
(3 Points)

3. Double site Hubbard model (oral)

The Hubbard Hamiltonian for a two site system reads explicitly:

o= e (yery + el o+ elyoar + elyea) + ¢ (elyear + elyeny + ehyenr + ¢ éay)

+ U (é%énéhéu + é;Tézrégié%) .
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1. Calculate the two particle eigenenergies analytically. Treat the case of parallel and antiparallel spin
separately. Assume a fixed ¢ < 0 and plot the results as a function of U/t.
Hint: For the antiparallel case consider the basis of the corresponding Hilbert space:

ehyel o), ebel oy, eliel o), elel o).
Calculate the matrix elements of H in this basis and diagonalize the resulting 4 x 4 matrix.

2. Calculate the ground state in the Hartree-Fock approximation and compare it with the exact result from
3.1.

Frohes Schaffen!



