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1. Diffusion, velocity autocorrelation function, classical propagator, and classical
Kubo formula

Your aim is to show that the results obtained in the 1st lecture of Week 9 and in Sheet 8 can be repro-
duced using the velocity auto-correlation function wαβ(t) = 〈vα(t)vβ(0)〉: i.e. the classical analogue of the

Kubo formula for a 2D electron gas at zero temperature reads σ̂(ω) = e2νD̂(ω), where ν is the density of
states at the Fermi level, the diffusion tensor Dαβ(ω) =

∫∞
0

dt exp(iωt)〈vα(t)vβ(0)〉, indices α, β denote x or y
directions and angular brackets denote the average over ensemble, i.e. over disorder realizations and angles, as
specified below.

1. Consider a 2D electron gas at zero temperature and perpendicular magnetic field. Find the classical
propagator G(φ, t;φ0, t0), – the conditional probability to find particle at the Fermi surface with velocity
v = vFnφ, where the unit vector nφ = (cosφ, sinφ)T , provided at t = t0 it has velocity v0 = vFnφ0

. The
Boltzmann equation for the propagator reads

(∂t + ωc∂φ + Ŝt)G(φ, t;φ0, t0) = 2πδ(φ− φ0)δ(t− t0).

Hints: Recall that the collision operator is diagonal in the eigen basis of ∂φ, i.e. Ŝt{einφ} = −τ−1n einφ, while
2πδ(φ) =

∑∞
n=−∞ exp(inφ). Seek for the solution in the form G =

∑∞
n=−∞ gn(t− t0)θ(t− t0) exp[in(φ−

φ0)], where θ(t) is the step function. 3 Points)

2. The propagator G fully describes the stochastic classical dynamics in the ensemble-averaged disordered
system. In particular, the velocity autocorrelation function is given by

Dαβ(t) = v2F 〈〈nα(φ)G(φ, t;φ0, t0)nβ(φ0)〉〉φ,φ0 ,

where angular brackets denote angular averages. Find the diffusion tensorD(t) as well as the correspondent

dynamic conductivity in magnetic field given by σ̂(ω) = e2νD̂(ω) = e2ν
∞∫
−∞

dtD̂(t) exp(iωt). Hints: You

will find it easier to deal with v±(t) = 〈vx(t) ± ivy(t)〉φ = vF 〈G(φ, t;φ0, t0) exp(±iφ)〉φ, which will give
directly Dxx ± iDyx etc. (2 Points)

2. Wick’s theorem

1. Show that, for a system of non-interacting fermions described by the Hamiltonian in the energy basis

Ĥ =
∑
α

εαĉ
†
αĉα

(
=

N∑
i=1

ĥi

)
,

the following relation for the many-body grandcanonical expectation value holds:

〈ĉ†α1
ĉ†α2

ĉα3 ĉα4〉 = 〈ĉ†α1
ĉα4〉〈ĉ†α2

ĉα3〉δα1α4 δα2α3 − 〈ĉ†α1
ĉα3〉〈ĉ†α2

ĉα4〉δα1α3 δα2α4 ,
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where

〈ĉ†α1
ĉ†α2

ĉα3 ĉα4〉 ≡
1

Z
Tr
{
ĉ†α1

ĉ†α2
ĉα3 ĉα4 exp [−β(H − µN)]

}
and Z is the grandcanonical partition function. The trace is taken over the full Fock space. Hint: Consider
the use of the eigenbasis of ĥ. (2 Points)

2. Derive from 2.1 that, for noninteracting fermions, in every other single particle basis {|n〉} the following
relation holds:

〈ĉ†n1
ĉ†n2

ĉn3 ĉn4〉 = 〈ĉ†n1
ĉn4〉〈ĉ†n2

ĉn3〉 − 〈ĉ†n1
ĉn3〉〈ĉ†n2

ĉn4〉.

Note that this is valid even if in this basis the Hamiltonian

Ĥ =
∑
n,m

hnmĉ
†
nĉm

contains non-diagonal terms, hnm for n 6= m. Hint: Diagonalize H first, using a unitary transformation
ĉn =

∑
α unαĉα. Apply the equation proven in 2.1. Use, e.g., the fact that ∂〈n̂α〉/∂εβ = 0 for α 6= β,

together with 〈n̂α〉 = −β−1∂ lnZ/∂εα . Perform the canonical transformation in the reverse direction.
(3 Points)

3. Double site Hubbard model (oral)

The Hubbard Hamiltonian for a two site system reads explicitly:

Ĥ = ε0

(
ĉ†1↑ĉ1↑ + ĉ†1↓ĉ1↓ + ĉ†2↑ĉ2↑ + ĉ†2↓ĉ2↓

)
+ t
(
ĉ†1↑ĉ2↑ + ĉ†2↓ĉ1↓ + ĉ†2↑ĉ1↑ + ĉ†1↓ĉ2↓

)
+ U

(
ĉ†1↑ĉ1↑ĉ

†
1↓ĉ1↓ + ĉ†2↑ĉ2↑ĉ

†
2↓ĉ2↓

)
.

t

U

21

e0

1. Calculate the two particle eigenenergies analytically. Treat the case of parallel and antiparallel spin
separately. Assume a fixed t < 0 and plot the results as a function of U/t.
Hint: For the antiparallel case consider the basis of the corresponding Hilbert space:

ĉ†1↑ĉ
†
1↓|0〉, ĉ†2↑ĉ

†
2↓|0〉, ĉ†1↑ĉ

†
2↓|0〉, ĉ†2↑ĉ

†
1↓|0〉.

Calculate the matrix elements of Ĥ in this basis and diagonalize the resulting 4× 4 matrix.

2. Calculate the ground state in the Hartree-Fock approximation and compare it with the exact result from
3.1.

Frohes Schaffen!
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