Quantum theory of condensed matter I

PD Dr. Andrea Donarini	Tue $10: 00-12: 00$	H33
	Thu $10: 00-12: 00$	H33
Dr. Ivan Dmitriev	Tue $12: 00-14: 00$	9.2 .01

Sheet 10

1. Diffusion, velocity autocorrelation function, classical propagator, and classical Kubo formula

Your aim is to show that the results obtained in the 1st lecture of Week 9 and in Sheet 8 can be reproduced using the velocity auto-correlation function $\mathrm{w}_{\alpha \beta}(t)=\left\langle v_{\alpha}(t) v_{\beta}(0)\right\rangle$: i.e. the classical analogue of the Kubo formula for a 2D electron gas at zero temperature reads $\hat{\sigma}(\omega)=e^{2} \nu \hat{D}(\omega)$, where ν is the density of states at the Fermi level, the diffusion tensor $D_{\alpha \beta}(\omega)=\int_{0}^{\infty} \mathrm{d} t \exp (i \omega t)\left\langle v_{\alpha}(t) v_{\beta}(0)\right\rangle$, indices α, β denote x or y directions and angular brackets denote the average over ensemble, i.e. over disorder realizations and angles, as specified below.

1. Consider a 2 D electron gas at zero temperature and perpendicular magnetic field. Find the classical propagator $G\left(\phi, t ; \phi_{0}, t_{0}\right)$, - the conditional probability to find particle at the Fermi surface with velocity $\mathbf{v}=v_{F} \mathbf{n}_{\phi}$, where the unit vector $\mathbf{n}_{\phi}=(\cos \phi, \sin \phi)^{T}$, provided at $t=t_{0}$ it has velocity $\mathbf{v}_{0}=v_{F} \mathbf{n}_{\phi_{0}}$. The Boltzmann equation for the propagator reads

$$
\left(\partial_{t}+\omega_{c} \partial_{\phi}+\widehat{\mathrm{St}}\right) G\left(\phi, t ; \phi_{0}, t_{0}\right)=2 \pi \delta\left(\phi-\phi_{0}\right) \delta\left(t-t_{0}\right)
$$

Hints: Recall that the collision operator is diagonal in the eigen basis of ∂_{ϕ}, i.e. $\widehat{\mathrm{St}}\left\{e^{i n \phi}\right\}=-\tau_{n}^{-1} e^{i n \phi}$, while $2 \pi \delta(\phi)=\sum_{n=-\infty}^{\infty} \exp ($ in $\phi)$. Seek for the solution in the form $G=\sum_{n=-\infty}^{\infty} g_{n}\left(t-t_{0}\right) \theta\left(t-t_{0}\right) \exp [\operatorname{in}(\phi-$ $\left.\left.\phi_{0}\right)\right]$, where $\theta(t)$ is the step function.

3 Points)
2. The propagator G fully describes the stochastic classical dynamics in the ensemble-averaged disordered system. In particular, the velocity autocorrelation function is given by

$$
D_{\alpha \beta}(t)=v_{F}^{2}\left\langle\left\langle n_{\alpha}(\phi) G\left(\phi, t ; \phi_{0}, t_{0}\right) n_{\beta}\left(\phi_{0}\right)\right\rangle\right\rangle_{\phi, \phi_{0}},
$$

where angular brackets denote angular averages. Find the diffusion tensor $D(t)$ as well as the correspondent dynamic conductivity in magnetic field given by $\hat{\sigma}(\omega)=e^{2} \nu \hat{D}(\omega)=e^{2} \nu \int_{-\infty}^{\infty} \mathrm{d} t \hat{D}(t) \exp (i \omega t)$. Hints: You will find it easier to deal with $v_{ \pm}(t)=\left\langle v_{x}(t) \pm i v_{y}(t)\right\rangle_{\phi}=v_{F}\left\langle G\left(\phi, t ; \phi_{0}, t_{0}\right) \exp (\pm i \phi)\right\rangle_{\phi}$, which will give directly $D_{x x} \pm i D_{y x}$ etc.
(2 Points)

2. Wick's theorem

1. Show that, for a system of non-interacting fermions described by the Hamiltonian in the energy basis

$$
\hat{H}=\sum_{\alpha} \epsilon_{\alpha} \hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha}\left(=\sum_{i=1}^{N} \hat{h}_{i}\right),
$$

the following relation for the many-body grandcanonical expectation value holds:

$$
\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}}\right\rangle=\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{4}}\right\rangle\left\langle\hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}}\right\rangle \delta_{\alpha_{1} \alpha_{4}} \delta_{\alpha_{2} \alpha_{3}}-\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{3}}\right\rangle\left\langle\hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{4}}\right\rangle \delta_{\alpha_{1} \alpha_{3}} \delta_{\alpha_{2} \alpha_{4}},
$$

where

$$
\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}}\right\rangle \equiv \frac{1}{Z} \operatorname{Tr}\left\{\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}} \exp [-\beta(H-\mu N)]\right\}
$$

and Z is the grandcanonical partition function. The trace is taken over the full Fock space. Hint: Consider the use of the eigenbasis of h.
(2 Points)
2. Derive from 2.1 that, for noninteracting fermions, in every other single particle basis $\{|n\rangle\}$ the following relation holds:

$$
\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{3}} \hat{c}_{n_{4}}\right\rangle=\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{4}}\right\rangle\left\langle\hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{3}}\right\rangle-\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{3}}\right\rangle\left\langle\hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{4}}\right\rangle
$$

Note that this is valid even if in this basis the Hamiltonian

$$
\hat{H}=\sum_{n, m} h_{n m} \hat{c}_{n}^{\dagger} \hat{c}_{m}
$$

contains non-diagonal terms, $h_{n m}$ for $n \neq m$. Hint: Diagonalize H first, using a unitary transformation $\hat{c}_{n}=\sum_{\alpha} u_{n \alpha} \hat{c}_{\alpha}$. Apply the equation proven in 2.1. Use, e.g., the fact that $\partial\left\langle\hat{n}_{\alpha}\right\rangle / \partial \epsilon_{\beta}=0$ for $\alpha \neq \beta$, together with $\left\langle\hat{n}_{\alpha}\right\rangle=-\beta^{-1} \partial \ln Z / \partial \epsilon_{\alpha}$. Perform the canonical transformation in the reverse direction.
(3 Points)

3. Double site Hubbard model (oral)

The Hubbard Hamiltonian for a two site system reads explicitly:

$$
\begin{aligned}
& \hat{H}=\epsilon_{0}\left(\hat{c}_{1 \uparrow}^{\dagger} \hat{c}_{1 \uparrow}+\hat{c}_{1 \downarrow}^{\dagger} \hat{c}_{1 \downarrow}+\hat{c}_{2 \uparrow}^{\dagger} \hat{c}_{2 \uparrow}+\hat{c}_{2 \downarrow}^{\dagger} \hat{c}_{2 \downarrow}\right)+t\left(\hat{c}_{1 \uparrow}^{\dagger} \hat{c}_{2 \uparrow}+\hat{c}_{2 \downarrow}^{\dagger} \hat{c}_{1 \downarrow}+\hat{c}_{2 \uparrow}^{\dagger} \hat{c}_{1 \uparrow}+\hat{c}_{1 \downarrow}^{\dagger} \hat{c}_{2 \downarrow}\right) \\
& +U\left(\hat{c}_{1 \uparrow}^{\dagger} \hat{c}_{1 \uparrow} \hat{c}_{1 \downarrow}^{\dagger} \hat{c}_{1 \downarrow}+\hat{c}_{2 \uparrow}^{\dagger} \hat{c}_{2 \uparrow} \hat{c}_{2 \downarrow}^{\dagger} \hat{c}_{2 \downarrow}\right) .
\end{aligned}
$$

1. Calculate the two particle eigenenergies analytically. Treat the case of parallel and antiparallel spin separately. Assume a fixed $t<0$ and plot the results as a function of U / t.
Hint: For the antiparallel case consider the basis of the corresponding Hilbert space:

$$
\hat{c}_{1 \uparrow}^{\dagger} \hat{c}_{1 \downarrow}^{\dagger}|0\rangle, \quad \hat{c}_{2 \uparrow}^{\dagger} \hat{c}_{2 \downarrow}^{\dagger}|0\rangle, \quad \hat{c}_{1 \uparrow}^{\dagger} \hat{c}_{2 \downarrow}^{\dagger}|0\rangle, \quad \hat{c}_{2 \uparrow}^{\dagger} \hat{c}_{1 \downarrow}^{\dagger}|0\rangle
$$

Calculate the matrix elements of \hat{H} in this basis and diagonalize the resulting 4×4 matrix.
2. Calculate the ground state in the Hartree-Fock approximation and compare it with the exact result from 3.1.

Frohes Schaffen!

