Quantum theory of condensed matter I

PD Dr. Andrea Donarini	Tue $10: 00-12: 00$	H33
	Thu $10: 00-12: 00$	H33
Dr. Ivan Dmitriev	Tue $12: 00-14: 00$	9.2 .01

Sheet 9

1. Occupation number representation

Consider a fermionic system with two single-particle states $|\alpha\rangle$ and $|\beta\rangle$ that span the (two-dimensional) oneparticle Hilbert space. For instance, these can be spin-up and spin-down electron states in a single-level quantum dot or a hydrogen atom.

1. What are the dimensions of the zero-, two-, and three-particle Hilbert spaces? What is the dimension of the Fock space? Write down the basis of the Fock space explicitly as Slater determinants of the wave functions $\phi_{\alpha}(\mathbf{r}), \phi_{\beta}(\mathbf{r})$ and in the occupation number representation.
(2 Points)
2. Calculate, in the Fock basis, the matrix representation of the creation and annihilation operators $\hat{c}_{\mu}, \hat{c}_{\mu}^{\dagger}$ $(\mu=\alpha, \beta)$ and also of the occupation operators $\hat{n}_{\mu}=\hat{c}_{\mu}^{\dagger} \hat{c}_{\mu}$.
(2 Points)
3. Using explicitly the matrix multiplication of the matrices calculated in 1.2 , calculate the anticommutator relations

$$
\begin{equation*}
\left[\hat{c}_{\mu}, \hat{c}_{\nu}\right]_{+}=\left[\hat{c}_{\mu}^{\dagger}, \hat{c}_{\nu}^{\dagger}\right]_{+}=0 ; \quad\left[\hat{c}_{\mu}, \hat{c}_{\nu}^{\dagger}\right]_{+}=\delta_{\mu \nu} \tag{2Points}
\end{equation*}
$$

2. Scalar potential as a 1-body operator

1. Consider a static scalar potential term $V(\mathbf{r})$ in a single-particle Hamiltonian and derive its many-body second-quantized form in the position and momentum representation.
(1 Point)
2. Consider electron states in a deep rectangular quantum well of width a. The corresponding single-electron energy eigenvalues and eigenvectors are given by $\epsilon_{N \mathbf{k}}=\epsilon_{N}+\hbar^{2} k^{2} / 2 m$ and $\psi_{N \mathbf{k}}=\sqrt{\frac{2}{a S}} \sin \left(N \frac{\pi}{a} z\right) \exp (i \mathbf{k r})$, $N=1,2, \cdots$ and \mathbf{k} and \mathbf{r} being two-dimensional vectors in the quantum well plane. Write down the second-quantized version of the many-body Hamiltonian in the above eigen basis when it is perturbed by an additional external potential $\delta V(t, \mathbf{r}, z)$.
(1 Point)
3. For the particular cases of t-, \mathbf{r}-, or z-independent perturbations, describe qualitatively (in the framework of perturbation theory) which effects such perturbations may cause, based the presence/absense of certain couplings between the eigenstates of the unperturbed Hamiltonian.
(3 Points)

3. Contact potential (oral)

Consider spin- $1 / 2$ fermions interacting only when their spatial separation is effectively zero, $V\left(\vec{r}_{1}-\vec{r}_{2}\right)=$ $V \delta\left(\vec{r}_{1}-\vec{r}_{2}\right)$. Write down the associated two-particle operator in the second-quantized form, both in the position and momentum bases. Discuss distinctions between the short-range contact and long-range Coulomb interactions.

Frohes Schaffen!

