Quantum theory of condensed matter I

Sh	neet 9		
Dr. Ivan Dmitriev	Tue	12:00 - 14:00	9.2.01
PD Dr. Andrea Donarim	Tue Thu	10:00 - 12:00 10:00 - 12:00	нзз Н33
	π	10.00 19.00	1199

1. Occupation number representation

Consider a fermionic system with two single-particle states $|\alpha\rangle$ and $|\beta\rangle$ that span the (two-dimensional) oneparticle Hilbert space. For instance, these can be spin-up and spin-down electron states in a single-level quantum dot or a hydrogen atom.

- 1. What are the dimensions of the zero-, two-, and three-particle Hilbert spaces? What is the dimension of the Fock space? Write down the basis of the Fock space explicitly as Slater determinants of the wave functions $\phi_{\alpha}(\mathbf{r}), \phi_{\beta}(\mathbf{r})$ and in the occupation number representation. (2 Points)
- 2. Calculate, in the Fock basis, the matrix representation of the creation and annihilation operators $\hat{c}_{\mu}, \hat{c}^{\dagger}_{\mu}$ $(\mu = \alpha, \beta)$ and also of the occupation operators $\hat{n}_{\mu} = \hat{c}^{\dagger}_{\mu} \hat{c}_{\mu}$. (2 Points)
- 3. Using explicitly the matrix multiplication of the matrices calculated in 1.2, calculate the anticommutator relations

$$[\hat{c}_{\mu}, \hat{c}_{\nu}]_{+} = [\hat{c}^{\dagger}_{\mu}, \hat{c}^{\dagger}_{\nu}]_{+} = 0; \qquad [\hat{c}_{\mu}, \hat{c}^{\dagger}_{\nu}]_{+} = \delta_{\mu\nu}$$

(2 Points)

2. Scalar potential as a 1-body operator

- 1. Consider a static scalar potential term $V(\mathbf{r})$ in a single-particle Hamiltonian and derive its many-body second-quantized form in the position and momentum representation. (1 Point)
- 2. Consider electron states in a deep rectangular quantum well of width *a*. The corresponding single-electron energy eigenvalues and eigenvectors are given by $\epsilon_{N\mathbf{k}} = \epsilon_N + \hbar^2 k^2 / 2m$ and $\psi_{N\mathbf{k}} = \sqrt{\frac{2}{aS}} \sin(N\frac{\pi}{a}z) \exp(i\mathbf{k}\mathbf{r})$, $N = 1, 2, \cdots$ and **k** and **r** being two-dimensional vectors in the quantum well plane. Write down the second-quantized version of the many-body Hamiltonian in the above eigen basis when it is perturbed by an additional external potential $\delta V(t, \mathbf{r}, z)$. (1 Point)
- For the particular cases of t-, r-, or z-independent perturbations, describe qualitatively (in the framework of perturbation theory) which effects such perturbations may cause, based the presence/absense of certain couplings between the eigenstates of the unperturbed Hamiltonian. (3 Points)

3. Contact potential (oral)

Consider spin-1/2 fermions interacting only when their spatial separation is effectively zero, $V(\vec{r}_1 - \vec{r}_2) = V\delta(\vec{r}_1 - \vec{r}_2)$. Write down the associated two-particle operator in the second-quantized form, both in the position and momentum bases. Discuss distinctions between the short-range contact and long-range Coulomb interactions.

Frohes Schaffen!