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1. Compressibility of a 2D electron gas

1. Calculate the density of states (DoS) per unit volume ν(ε) for spin-degenerate 2D electron gas having
a parabolic spectrum, εk = ~2k2/2m. Make sure that two definitions, namely, ν(ε) =

∑
k δ(ε − εk) and

gs
∑

k f(k) = gs
∫
ν(εk)dεk

∫
(dφ/2π)f(k), are equivalent. Note that it is frequently customary to deal with the

DoS per spin projection, and to introduce the degeneracy factor gs (in our case, gs = 2) which tells how many
electrons may occupy a given k state. (1 Point)

2. Considering a spin-degenerate 2D electron gas in thermal equilibrium characterized by temperature T
and chemical potential µ, find the electron density n(T, µ) and compressibility χ(T, µ) = ∂n/∂µ. Using their
general form as an integral over energy, find explicit expressions for 2 limits: (a) degenerate Fermi gas, µ� T
and (b) non-degenerate Boltzmann gas, |µ| � T, µ < 0 . (2 Points)

2. Kinetics in crossed electric and magnetic field

Consider 2D electron gas subject simultaneously to an infinitesimally weak static electric field E and to a
static magnetic field B, directed perpendicular to the 2D plane. Assuming diffusive transport in the plane and
T � µ (as in the lecture), find the conductivity σ̂ and resistivity ρ̂ = σ̂−1 tensors which are defined through
j = σ̂E and E = ρ̂j. Please proceed as follows.

2.1 Consider the case E = 0 first. Analyse the term in Boltzmann equation containing the magnetic force
and show that a perpendicular magnetic field alone does not modify the equilibrium distribution. Explain why.
Use the notation ωc for the cyclotron frequency eB/m. (1 Point)

2.2 Consider now very small E 6= 0 and find the first-order correction δf ∝ |E| to equilibrium distribution
function. You can repeat the steps given in the lecture, but take into account that now there are two components
of current, one parallel and one perpendicular to the electric field. In order to better understand the procedure,
look for a solution in the form δf = (−∂f0/∂εk)

∑
n gne

inφ and consider the action of the collision integral on
individual angular harmonics St{einφ} = −τ−1n einφ. Find the eigen values τ−1n of the collision operator. For
n = ±1 they should reproduce the transport scattering rate τ−1 from the lecture. Find gn up to 1st order in E.
Show that only gn with n = ±1 (which enter the electrical current) are present in the perturbative expansion
to that order. Explain why. (3 Points)

2.3 Express the electrical current in terms of g±1 and find the conductivity and resistivity tensors. Make
sure that they obey the symmetry relations σxx(−B) = σxx(B) = σyy(B) and σxy(−B) = −σxy(B) = σyx(B).
Express σ̂ and resistivity ρ̂ in terms of parameter ωcτ and σ0 = σxx|B=0 found in the lecture. Draw the resulting
σxx, σxy, ρxx, and ρxy as a function of B and discuss limiting cases ωcτ � 1 and ωcτ � 1 (classically strong
and weak B, correspondingly). (2 Points)

3. Classical Kubo formula

A classical analogue of the Kubo formula reads, σ̂ = e2νD̂, where the diffusion (or, diffusivity) tensor Dml =∫∞
0

dt〈vm(t)vl(0)〉, and angular brackets denote the average over ensemble. In our 2D case at T � µ, this
means average over initial directions of velocity for particles at the Fermi surface, vx,y(0) = vF {cosφ0, sinφ0}
and 〈. . .〉 =

∫
(dφ0/2π) . . .. Recall that diffusion describes current arising in the presence of a density gradient

j = −eD̂∂n/∂r and is expressed through conductivity via the Einstein relation above.
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Demonstrate that this approach reproduces the conductivity tensor obtained in Exercise 2. Consider distri-
bution in the form f = δ(εk−εF )

∑
n gn(t)einφ and find solution to the Boltzmann equation (∂/∂t+ωc∂/∂φ)f =

St{f} with initial condition f(t = 0) = 2πδ(φ − φ0)δ(εk − εF ). Note that this equation describes ensemble-
averaged stochastic time evolution of the initial distribution in the absence of electric field but in the pres-
ence of magnetic field. Using results from exercises 2.1 and 2.2, find solutions for gn(t) as well as averages
〈vm(t)vl(0)〉 ≡ Mml(t)v

2
F /2. Show that, in the presence of B 6= 0, the memory function M̂(t) has components

Mxx = Myy = e−t/τ cosωct and Mxy = −Myx = e−t/τ sinωct. Using M̂(t), derive expression for the dynamic
conductivity σ̂(ω) in the magnetic field. In the static limit, it should reproduce results from exercise 2, and in
the limit B → 0 – the result for σxx(ω) from the lecture.

Frohes Schaffen!
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