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1. Specific heat for Einstein model of optical phonons

Repeat all the steps as given in the lecture for the Debye model of acoustic phonons using now the Einstein
model for optical phonons. As such, let all normal modes share the same frequency ωj(q) = Ω independent of
q. As before, the total number of modes is the number of atoms in volume V times the dimensionality of the
lattice d.
Calculate the internal energy E and the scecific heat CV = V −1∂E/∂T of Einstein phonons being in thermal
equilibrium at temperature T . Obtain an asymptotic expression for both quantities in the limits of large and
low temperatures. Compare the results with the case of Debye acoustic phonons. (2 Points)

2. Bose statistics

In the real world we never encounter zero temperature. Hence we will often need to use statistical physics
and thermal averages. For interacting system, general quantum mechanical version of the thermal average
reads:

〈Ô〉 =

∞∑
N=0

∑
{nλ}N

〈
{nλ}N

∣∣∣ ρ̂ Ô ∣∣∣ {nλ}N〉 ,
where the density operator ρ̂ is defined as:

ρ̂ = (1/Z) exp[−β(Ĥ − µN̂)] ,

and for each N the sum
∑
{nλ}N is taken only with respect to states with configuration {nλ}N with a number

of particles N . µ is the chemical potential and β = 1/kBT is the inverse temperature. Z is the grancanonical
partition function:

Z =

∞∑
N=0

∑
{nλ}N

〈
{nλ}N

∣∣∣ exp[−β(Ĥ − µN̂)]
∣∣∣ {nλ}N〉 ,

which normalizes the operator ρ̂ and is a key quantity for the calculation of thermal averages. N̂ is the number
operator N̂ =

∑
λ a
†
λaλ =

∑
λ n̂λ.

Let us consider the Hamiltonian for non-interacting bosons:

ĤB =
∑
λ

~ωλ
(
a†λaλ +

1

2

)
where the quantum number λ completely defines the single particle state. The chemical potential µ is taken to
be lower than the lowest boson energy and independent of the temperature.

1. Prove that the grancanonical partition function Z for this system reads:

Z =
∏
λ

e−β
~ωλ
2

1

1− e−β(~ωλ−µ)
.
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Hint: Use commutation relations to show that operators n̂λ and n̂λ‘′ commute, and factorize the expo-
nential. Recall that eX+Y = eXeY e−[X,Y ]/2 provided the commutator commutes with both operators X
and Y . You may also use the the following identity:

∞∑
N=0

∑
{nλ}N

∏
λ

qnλλ =
∏
λ

∞∑
nλ=0

qnλλ ,

where qλ is a set of complex numbers, one for each single particle state λ.

You have thus shown that different modes λ are statistically independent, Z = ΠλZλ. (3 Points)

2. What is the average number of bosons in the state defined by the quantum number λ? Using the definition
of average in terms of the density operator ρ̂, prove the relation:

〈n̂λ〉 = − 1

~β
∂

∂ωλ
(lnZ)− 1

2
.

(1 Point)

3. Using points 1. and 2. calculate 〈n̂λ〉. This is called Bose-Einstein distribution nBE and is a function of
the single particle energy ~ωλ, the temperature T and the chemical potential µ . (2 Points)

4. Plot nBE(ωλ, T, µ) vs. ωλ for different temperatures. Assume the chemical potential to be zero and the
single particle energies ωλ to be positive and very dense.

Note that nBE(ωλ, T, µ = 0) (Planck distribution) represents an equilibrium distribution for bosonic
excitations like phonons or photons. Thermal equlibrium in such system is reached due to interaction
with thermal bath via processes with creation and annihilation of individual quanta, hence the total
numer of quanta N is not conserved. The equlibrium state corresponds to the minimum of free energy F
with respect to N at fixed volume and temperature. Since (∂F/∂N)T,V = µ, it follows that the chemical
potential µ ought to be zero. (2 Points)

3. Fermi statistics

(Oral) Let us now consider the Hamiltonian for non-interacting fermions:

ĤF =
∑
λ

ελc
†
λcλ ,

where λ is a good quantum number for single particle states. The number operator N̂ =
∑
λ c
†
λcλ.

1. Prove that the grancanonical partition function Z for this system reads:

Z =
∏
λ

[
1 + e−β(ελ−µ)

]
.

Hint: Remember that for Fermions the Pauli exclusion principle holds. Formally {c†, c†} = 0 which implies
that a single particle state can never be occupied by more than one fermion.

2. Calculate the average number of fermions in the state defined by the quantum number λ. You just
rediscovered the Fermi-Dirac distribution nFD. As a first step, find the analogue of the relation in 2.2 in
the fermionic case.

3. Plot nFD(ελ, T, µ) vs. ελ for different temperatures. This time take a positive chemical potential. What
is the meaning of the chemical potential in the degenerate system at very low temperatures?

Frohes Schaffen!
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