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1. Nearly free electron Fermi surface near a single Bragg plane

Let us consider the nearly free electron band structure close to a single Bragg plane:
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1. Prove that, if we write q = %G + k and resolve k into its components parallel (k) and perpendicular
(k1) to the Bravais lattice vector G, the dispersion relation for the two bands given in Eq. (1) becomes:
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(1 Point)

Consider now an electronic density which corresponds to a Fermi energy ey = €% /2~ V(G)| +A.

2. Show that when 0 < A < 2|V(G)|, the Fermi surface lies entirely in the lower band and intersects the

Bragg plane in a circle of radious:
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(2 Points)

3. Show that if A > 2|V (G)|, the Fermi surface lies in Both bands, cutting the Bragg plane in two circles of
radii p; and pg and that the difference in the area of the two circles is:
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2. Density of states for tight binding models

Consider the following tight-binding Hamiltonian representing the valence electrons of an infinite chain of
atoms with the lattice constant a:
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where for simplicity the spin is neglected and we assume periodic boundary conditions.



1. Prove that the density of states for the system reads (in the limit Ngjtes — 00)

for |E| < 2t and vanishes elsewhere. Hint: start from the definition of the density of states,
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p(E) =

where Nio; is the total number of states for the system and « is labelling the eigenstates of the system
with eigenvalue E,. The following relation involving the Dirac delta can be useful:
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where the points x; are the zeroes of f(x). (2 Points)

2. What is the density of states for a 1-dimensional free electron gas? Compare it with the result calculated
in the previous point. (2 Points)

3. Now consider the generalization of the tight-binding model of an infinite chain to a square (2D) and a
cubic (3D) lattice. What are the dispersion relations in these two cases? (1 Point)

4. (Oral) Prove that the density of states can be reduced to the generic form
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where Jy(z) is a Bessel function defined as
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and d is the dimensionality, d = 1,2,3. Argue from Eq. (2) that the Fermi energy of chain, square or
cubic lattice crystal of monovalent atoms it is always vanishing.

Hint: the following relations may be useful
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Frohes Schaffen!



