University of Regensburg

Summer Term 2016

Applications of Group Theory

PD Dr. Andrea Donarini Lectures

Exercises

H33, Mondays, 14:15 H34, Thursdays, 14:15 5.0.21, Wednesdays, 13:15

Sheet 5

1. Relations between groups

Consider the following set of point symmetry groups: C_3 , C_{3v} , C_{3h} , S_3 , D_3 , and D_{3h} . Draw the stereogram associated to each of these groups and conclude which is the relation between the different sets of point symmetry operations.

2. Character of a class

The character of a matrix representative for a group element is nothing else that the trace of that matrix. The character is in reality associated to a class of symmetry operations thanks to the invariance of the trace under similarity transformations. Prove the latter statement.

3. Reduce a representation

Suppose that you have the following set of characters: $\chi(E) = 4$, $\chi(\sigma_h) = 2$, $\chi(C_3) = 1$, $\chi(S_3) = -1$, $\chi(C'_2) = 2$, $\chi(\sigma_v) = 0$.

- 1. Do these characters correspond to a representation of the point group D_{3h} ? Is it irreducible?
- 2. If the representation is reducible, find the irreducible representations contained therein.
- 3. Give an example of molecule with D_{3h} symmetry.

Frohes Schaffen!