Applications of Group Theory

PD Dr. Andrea Donarini Lectures

Exercises

H33, Mondays, 14:15 H34, Thursdays, 14:15 5.0.21, Wednesdays, 13:15

Sheet 2

1. Group of the Hamiltonian

Consider the linear hermitian operator \hat{H} (in practice the Hamiltonian!) that maps a given Hilbert space \mathcal{H} into itself. Prove that the set of all linear, regular operators \hat{R} defined on the same Hilbert space and with the property $[\hat{R}, \hat{H}] = 0$ form a group. Take as binary composition the usual multiplication between operators.

2. Conservation of the norm

Consider a vectorial space V on which a scalar product is defined as a bilinear function by the relation $\langle e_i, e_j \rangle = \delta_{ij}$, where δ_{ij} is the Kronecker function, and $i(j) = 1, \ldots, n$ labels the n elements $e_{i(j)}$ of a complete basis for V. Prove that each linear transformation f in V which conserves the scalar product between vectors, *i.e.* $\langle f(v), f(w) \rangle = \langle v, w \rangle$ is represented by a unitary matrix *i.e.* $M_f M_f^{\dagger} = M_f^{\dagger} M_f = \mathbf{1}$, where $\mathbf{1}$ represents the identity matrix.

3. Matrix representations

In the lecture we have introduced the homomorphism connecting point groups to groups of 3x3 matrices generating linear mappings of \mathbb{R}^3 into itself. Moreover we related the latter to a group of functionals which can eventually be mapped back into a matrix group once a vectorial space of functions left invariant under the group of functionals is introduced. Let us now make a concrete example:

- 1. Construct the matrix that generates, in \mathbb{R}^3 , C_4^+ , *i.e.* the anticlockwise rotation of $\pi/2$ with respect of the z axis.
- 2. Construct the associated function operator $\hat{R}_{C_4^+}$ and find the transformed function for each of the 5 d atomic orbitals. Find the associated matrix representation of the point symmetry operation in the Hilbert space generated by such orbitals.
- 3. Repeat the first two steps for all the elements of the cyclic group C_4 . Is the representation reducible or irreducible?
- 4. Analogously, find the matrix representation of the group D_4 in the same Hilbert space.

Frohes Schaffen!