Applications of Group Theory

PD Dr. Andrea Donarini Lectures Exercises

9.2.01, Mondays, 14:15 H34, Wednesdays, 14:00

Sheet 11

1. Character tables of double groups

- 1. Construct the character table of the group \bar{D}_2
- 2. Consider the group D_4 and find the classes of the associated double group \bar{D}_4 (Hint: make use of the Opechowski's rules)
- 3. Which is the number of irreducible spinor representations in \bar{D}_2 , and in \bar{D}_4 ?
- 4. Complete now the character table of the double group \bar{D}_4 .

2. Geometry of rotations

- 1. Prove that all the C_3 operations of the octahedral group O (group of the cube) are conjugate, but that this is not so for the T group (group of the tetrahedron). Discuss the corresponding classes in these groups. Hint: make use of the concept of pole.
- 2. Prove that

$$R(\lambda; \mathbf{\Lambda})\mathbf{r} = (1 - 2\Lambda^2)\mathbf{r} + 2\lambda(\mathbf{\Lambda} \times \mathbf{r}) + 2(\mathbf{\Lambda} \cdot \mathbf{r})\mathbf{\Lambda}$$

where $R(\lambda; \mathbf{\Lambda})$ is a rotation in terms of the Euler-Rodrigues parameters and \mathbf{r} is a generic space vector.

Frohes Schaffen!