University of Regensburg

Summer Term 2014

Applications of Group Theory

PD Dr. Andrea Donarini Lectures Exercises

9.2.01, Mondays, 14:15 H34, Wednesdays, 14:00

Sheet 7

1. Benzene molecule

The Hueckel model of the benzene molecule only considers the p_z orbitals associated to its carbon atoms. In second quantization this Hamiltonian reads:

$$H = \sum_{i=1...6,\sigma} \varepsilon c_{i\sigma}^{\dagger} c_{i\sigma} + t c_{i+1\sigma}^{\dagger} c_{i\sigma} + t^* c_{i\sigma}^{\dagger} c_{i+1\sigma}$$

where $c_{i\sigma}^{\dagger}$ creates and electron of spin σ in a p_z orbital centered around the position $\vec{R_i}$ with

$$\vec{R}_i = a_0 \begin{pmatrix} \cos\left(\frac{2\pi}{6}(i-1)\right)\\ \sin\left(\frac{2\pi}{6}(i-1)\right)\\ 0 \end{pmatrix},$$

and $a_0 = 1.42$ Å, ε represents the on-site energy, t the hopping amplitudes between neighboring sites.

- 1. Identify the symmetry elements of the Hamiltonian and the associated point groups in the case that t is real and also if t has an imaginary component. Neglect in both cases the contribution of the spin.
- 2. Construct the characters of the representation associated to the single particle Hilbert space for the benzene Hamiltonian. Reduce the six dimensional representation associated to each of the two spin sectors.
- 3. Construct the basis states that transform like the irreducible representation of the point groups identified in points 1) and 2).
- 4. Find the eigenvalues and the eigenvectors of H and the associated degeneracies.

2. Hypothetical CH₄ molecule

Consider the hypothetical molecule CH₄ where the four H atoms are at the corner of a square $(\pm a, 0, 0)$ and $(0, \pm a, 0)$ while the C atom is at (0, 0, z), where z < a. What are the symmetry elements?

- 1. Identify the proper character table.
- 2. Using the basis functions in the character table, write down a set of (2×2) matrices which provide a representation for the two-dimensional irreducible representation of this group.

- 3. Find the four linear combinations of the four H orbitals (assume identical s-functions at each H site) that transform as the irreducible representations of the group. What are their symmetry types?
- 4. What are the basis functions that generate the irreducible representations?
- 5. Check that xz forms a proper basis function for the two-dimensional representation of this point group and find its partner.
- 6. What are the irreducible representations and partners of the following basis functions in the point group (remember that the four hydrogen lie in the xy plane): i) xyz, ii) x^2y , iii) x^2z . iv) x + iy.
- 7. What additional symmetry operations result in the limit that all H atoms are coplanar with atom C? What is now the appropriate group and character table? Draw the corresponding stereogram.

Frohes Schaffen!