Applications of Group Theory

PD Dr. Andrea Donarini
Lectures
9.2.01, Mondays, 14:15

Exercises
H34, Wednesdays, 14:00

Sheet 6

1. Basis functions and representations of D_{3} and $D_{3 h}$

Consider the point group D_{3} and the basis functions partners to its irreducible representations:

1. What are the matrix representations for the bases $\left(2 x y, x^{2}-y^{2}\right)$ and $\left(R_{x}, R_{y}\right)$ in the point group D_{3} ?
2. Using the results in 1), find the unitary transformation which transforms the matrices for the representation corresponding to the basis functions $\left(2 x y, x^{2}-y^{2}\right)$ into the representation corresponding to the basis functions (x, y)
3. Using projection operators, check that $x y$ is a proper basis function of the two dimensional irreducible representation E in the point group D_{3}. Using the matrix representation found in 1) and the projection operators find the other partner of the representation.
4. Using the basis functions in the character table for $D_{3 h}$, write a set of (2×2) matrices for the two two-dimensional representations E^{\prime} and $E^{\prime \prime}$.

2. The molecule $A B_{6}$

Consider a molecule $A B_{6}$ (see Figure) where the atom A lies in the central plane and three B atoms indicated by a circle lie in a plane at distance c above the central plane and the B atoms indicated by a cross lie in a plane below the central plane at a distance $-c^{\prime}$. When projected onto the central plane, all B atoms occupy the corners of a hexagon.

1. Find the symmetry elements and classes.
2. Construct the character table. To which point group does the molecule correspond? How many irreducible representations are there? How many are one-dimensional and how many are of higher dimensionality?
3. Using the basis functions in the character table of this point group, find a set of matrices for each irreducible representation of the group.
4. Find the linear combination of the six s-orbitals of the B atoms that transform as each of the irreducible representations of the group.
5. What additional symmetry operations result in the limit $c=c^{\prime} \neq 0$? and in the limit $c=c^{\prime}=0$? Indicate the associated point groups and draw the corresponding stereograms.

Frohes Schaffen!

