Quantum Theory of Condensed Matter I

Sheet 7

1. A fermionic two orbital system

Let us consider the physical system consisting of fermions allowed to occupy two orbitals. The Hamiltonian is given by:

$$
\begin{equation*}
H=\varepsilon_{1} c_{1}^{\dagger} c_{1}+\varepsilon_{2} c_{2}^{\dagger} c_{2}+b c_{1}^{\dagger} c_{2}+b^{*} c_{2}^{\dagger} c_{1} \tag{1}
\end{equation*}
$$

In order to study the dynamics of the system we are interested in its retarded Green's function:

$$
\begin{equation*}
G_{n m}^{R}\left(t, t^{\prime}\right)=-\frac{i}{\hbar} \theta\left(t-t^{\prime}\right)\left\langle\left\{c_{n}(t), c_{m}^{\dagger}\left(t^{\prime}\right)\right\}\right\rangle \tag{2}
\end{equation*}
$$

where the creation and annihilation operators are in Heisenberg picture and the average is taken with respect to a thermal distribution.

1. Prove that the retarded Green's function only depends on the difference between the initial time t^{\prime} and final time t.

$$
G_{n m}^{R}\left(t, t^{\prime}\right)=G_{n m}^{R}\left(t-t^{\prime}\right)
$$

(2 Points)
2. Calculate the equation of motion for the retarded Green's function in the frequency domain. In other terms, using (1) and the definition (2) prove that

$$
(\hbar \omega+i \eta) G_{n m}^{R}(\omega)=\delta_{n m}+\sum_{l} H_{n l} G_{l m}^{R}(\omega)
$$

or, in other terms that

$$
\mathbf{G}^{R}(\omega)=[\hbar \omega+i \eta-\mathbf{H}]^{-1},
$$

where η is an infinitesimal positive quantity, we set without any loss of generality (thanks to the previous point) $t^{\prime}=0$ and finally $H_{n l}=\langle n| H|l\rangle$ are the matrix elements of H in the single particle basis $|n\rangle$ with $n=1,2$.
(2 Points)
3. Calculate the retarded Green's function in the time domain. In particular check explicitly the limit:

$$
\lim _{t \rightarrow 0} G_{n m}^{R}(t)=-\frac{i}{\hbar} \delta_{n m}
$$

Hint: Make use of the Cauchy's residue theorem.
(2 Points)
4. The Green's functions have a probabilistic interpretation. Namely, if $P_{n m}(t)$ is the probability of finding the system at time t in the state n when it was prepared in m at time $t=0$, then:

$$
P_{n m}(t)=\left|\hbar G_{n m}^{R}(t)\right|^{2}
$$

Calculate the probabilities $P_{11}(t)$ and $P_{21}(t)$ and prove that, as it is natural, $P_{11}(t)+P_{21}(t)=1$ for all times. Make a plot of the result. For $b \neq 0$ the probabilities $P_{n m}$ oscillate periodically in time. Why?
(2 Points)
5. Analyze the results obtained at the previous point. In particular consider the limits $\left|\frac{\varepsilon_{1}-\varepsilon_{2}}{2 b}\right|^{2} \ll 1$ and $\left|\frac{\varepsilon_{1}-\varepsilon_{2}}{2 b}\right|^{2} \gg 1$. Prove that in the first case all probabilities $P_{n m}(t)$ oscillate between 0 and 1 while in the second case the oscillation is very weak and $P_{n m}(t) \approx \delta_{n m}$ for all positive times. Comment the result.

Frohes Schaffen!

