Quantum Theory of Condensed Matter

Prof. Milena Grifoni
Room H33
Dr. Andrea Donarini

Sheet 5

1. Interacting Hamiltonian in localized representation

Express the Hamiltonian for N-electrons in a periodic potential

$$
H_{N}=\sum_{l=1}^{N}\left(\frac{p_{l}^{2}}{2 m}+V\left(\vec{r}_{l}\right)\right)+\frac{1}{2} \sum_{k, l=1 k \neq l}^{N} v_{e e}\left(\vec{r}_{l}-\vec{r}_{k}\right),
$$

in second quantization form using the Wannier basis. How does the interacting term look like in the tight binding approximation where terms up to nearest neighbours are retained?

2. Electronic structure of non interacting graphene

A graphene sheet is a honeycomb lattice of carbon atoms (see figure below). Let the distance between car-

bon atoms be $a=1.42 \AA$.

1. Find the reciprocal lattice, and construct the first Brillouin zone.
2. A good model for graphene is to consider a plane in which there is one valence electron per carbon atom. To calculate the electronic bands of the non-interacting problem we will use the tight-binding approximation, in which this electron can occupy a single p_{z} orbital at each carbon site. Let \vec{R} denote the centers of the hexagons in the honeycomb: these form the underlying hexagonal Bravais lattice. Please notice that the latter is indeed a Bravais lattice differently from the graphene honeycomb lattice. The unit cell spanned by \vec{a}_{1} and \vec{a}_{2} contains two carbon atoms conventionally labelled as A and B atom, located at $\vec{R}+\vec{\tau}_{\mathrm{A}}$, $\vec{R}+\vec{\tau}_{\mathrm{B}}$, as shown in the figure. Denote the tight-binding hopping amplitude connecting these sites by t. Choose the zero of energy so that the energy of the p_{z} isolated atomic orbital is zero. In the tight binding approximation only such matrix element is retained, so that in the p_{z} basis the entire Hamiltonian consists of the nearest-neighbour hopping. Write the Hamiltonian in second quantization in the basis of the (localized) p_{z} orbitals.
3. Write the Hamiltonian also in the basis of the extended states

$$
\begin{aligned}
\left|\phi_{A \vec{k}}\right\rangle & =\frac{1}{\sqrt{N_{c e l}}} \sum_{\vec{R}} e^{\mathrm{i} \vec{k} \cdot \vec{R}}\left|p_{z}, \vec{R}+\vec{\tau}_{A}\right\rangle \\
\left|\phi_{B \vec{k}}\right\rangle & =\frac{1}{\sqrt{N_{c e l}}} \sum_{\vec{R}} e^{\mathrm{i} \vec{k} \cdot \vec{R}}\left|p_{z}, \vec{R}+\vec{\tau}_{B}\right\rangle
\end{aligned}
$$

where $N_{\text {cel }}$ is the number of unit cells of the crystal and $\left|p_{z}, \vec{S}\right\rangle$ is the state of the p_{z} orbital localized in the position \vec{S}. Hint: make use of the relation

$$
\frac{1}{N_{c e l}} \sum_{\vec{R}} \exp \left[-\mathrm{i}\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{R}\right]=\delta_{\vec{k} \vec{k}^{\prime}}
$$

where the sum is intended over the Bravais lattice and \vec{k} and \vec{k}^{\prime} belong to the reciprocal lattice.
4. The generic extended state of the graphene sheet have the form: $|\psi\rangle=\sum_{\vec{k}} c_{A \vec{k}}\left|\phi_{A \vec{k}}\right\rangle+c_{B \vec{k}}\left|\phi_{B \vec{k}}\right\rangle$. where $c_{A \vec{k}}$ and $c_{B \vec{k}}$ are complex numbers. Look for the eigenstates of the system and find also the corresponding eigenvalues. How many bands do you find? What are the energy-wavevector relations?
Hint: You will need to solve a two-by-two matrix eigenvalue problem: Namely the time independent Schödinger equation written in the basis of extended states .
5. Show that the Fermi energy is equal to zero, by verifying that this gives the correct electron density. Find the set of \vec{k} points for which $\varepsilon(\vec{k})=0$. Show that these correspond to the corners of the first Brillouin zone.
6. (Optional) Show that, near to a (first) Brillouin zone corner with wavevector \vec{K} (note that \vec{K} is the location of a BZ corner, not a reciprocal lattice vector), the spectrum is approximately

$$
\varepsilon(\vec{k}) \approx \pm \hbar v \sqrt{\left(k_{x}-K_{x}\right)^{2}+\left(k_{y}-K_{y}\right)^{2}}
$$

Determine the velocity v in terms of t and a. This behavior is intermediate between that of a metal (with a Fermi surface instead of Fermi points \vec{K}) and an insulator (with a band gap). Indeed, graphene behaves as a semi-metal, with poor conductivity significantly higher than in an insulator.

Frohes Schaffen!

