Quantum Theory of Condensed Matter

Room H33
Prof. Milena Grifoni
Dr. Andrea Donarini
Wednesdays at 13:15

Sheet 3

1. Occupation number representation

Let us consider a fermionic system with two single particle states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ that span the (two-dimensional) one-particle Hilbert space.

1. Which dimension has the two-particle Hilbert space? Which dimension has the Fock space? Write down the form of the basis of the Fock space explicitly as Slater determinants of the wave functions $\phi_{1}(\mathbf{r}), \phi_{2}(\mathbf{r})$ and in the occupation number representation.
2. Calculate in the Fock basis the matrix representation of the creation and annihilation operators c_{i}, c_{i}^{\dagger} $(i=1,2)$ and also of the occupation operators $n_{i}=c_{i}^{\dagger} c_{i}$
3. Verify the anticommutator relations

$$
\left[c_{i}, c_{j}\right]_{+}=\left[c_{i}^{\dagger}, c_{j}^{\dagger}\right]_{+}=0, \quad\left[c_{i}, c_{j}^{\dagger}\right]_{+}=\delta_{i j}
$$

explicitly using matrix multiplication of the matrices calculated at point 2 .
4. Consider a Hamilton operator

$$
\hat{H}=\hat{T}+\hat{V}
$$

where \hat{T} is a single particle operator and \hat{V} a two particle one. With respect to the single particle basis $\left|\phi_{i}\right\rangle$ the matrix elements are:

$$
\begin{aligned}
\left\langle\phi_{i}\right| \hat{T}\left|\phi_{i}\right\rangle & =\epsilon, \quad\left\langle\phi_{i}\right| \hat{T}\left|\phi_{j}\right\rangle=t \text { for } i \neq j \\
\left\langle\phi_{1}, \phi_{2}\right| \hat{V}\left|\phi_{1}, \phi_{2}\right\rangle & =U, \quad\left\langle\phi_{1}, \phi_{2}\right| \hat{V}\left|\phi_{2}, \phi_{1}\right\rangle=J
\end{aligned}
$$

where the notation is such that, e.g.:

$$
\left\langle\phi_{1}, \phi_{2}\right| \hat{V}\left|\phi_{2}, \phi_{1}\right\rangle \equiv \int \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \phi_{1}^{*}\left(\mathbf{r}_{1}\right) \phi_{2}^{*}\left(\mathbf{r}_{2}\right) V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \phi_{1}\left(\mathbf{r}_{2}\right) \phi_{2}\left(\mathbf{r}_{1}\right)
$$

Remember that in second quantization a single and two particle operators are respectively written as:

$$
\hat{T}=\sum_{\lambda, \mu} c_{\lambda}^{\dagger}\left\langle\phi_{\lambda}\right| \hat{T}\left|\phi_{\mu}\right\rangle c_{\mu}, \quad \hat{V}=\frac{1}{2} \sum_{\lambda \mu \lambda^{\prime} \mu^{\prime}} c_{\lambda}^{\dagger} c_{\mu}^{\dagger}\left\langle\phi_{\lambda}, \phi_{\mu}\right| \hat{V}\left|\phi_{\lambda^{\prime}}, \phi_{\mu^{\prime}}\right\rangle c_{\mu^{\prime}} c_{\lambda^{\prime}},
$$

where $\left|\phi_{\lambda}\right\rangle$ represent a generic single particle basis and c_{λ}^{\dagger} the corresponding creation operator. Write the operator \hat{H} in second quantization and in the matrix representation (starting from the single particle basis introduced). Calculate the eigenvalues and eigenvectors for \hat{H}.
5. (Optional) Again, write \hat{H} in second quantization, but this time as a single particle basis use the eigenvectors of \hat{T}. Which is the connection between this creation and annihilation operators and the ones considered in the points $1 .-4 . ?$ Is this a unitary transformation?

Frohes Schaffen!

