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Problem set: Electron-Electron Interaction (I1)

11.1. Double site Hubbard model

The Hubbard Hamiltonian for a two site system reads explicitly:
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(a) Calculate the two particle eigenenergies analytically. Treat the case of parallel
and antiparallel spin separately. Plot the results as a function of U/t.
Hint: For the antiparallel case consider the basis of the corresponding Hilbert space:

CITch|O>, 02T621|0>’ C{Tcgl|0>, chcUO)

Calculate the matrix elements of H in this basis and diagonalize the resulting 4 x 4
matrix.

(b) Calculate the ground state in the Hartree-Fock approximation and compare it
with the exact result of point (a).

11.2. Homogeneous electron gas in the Hartree-Fock approximation

Show that the following identities hold by transforming the sums over k' and % into
integrals and evaluate them.
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[Kiir] Thomas Fermi limit in atomic physics

Let us consider an atom with a positively charged nucleus with a charge Zle| (where
e is the electronic charge taken with the sign) and its surrounding electron shells.
In the Hartree limit the potential felt by each electron at position r is given by the
expression:
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where n(r) is the density of electrons. In the Thomas-Fermi approximation one can
assume that the potential is varying so slowly that can be considered constant around
a given point r. Then it is allowed to introduce a local homogemeous electron gas
for the region around the point r.

(a) Justify that, from the previous assumption, it follows that
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where € is the energy of the highest occupied energy level.
(b) Justify that for a neutral atom ep = 0.

(c) Prove that Eq. (1) is equivalent to the Poisson equation and derive from that
and using the result of point (b) the Thomas-Fermi equation:
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Hint: The charge distribution and the associated potential can be considered sphe-
rically symmetric.

(d) Show that, by introducing the Bohr radius ag as length unit,
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Eq. (2) becomes the following differential equation for the dimensionless poten-
tial ®(x):
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with the boundary conditions

o(0) = 1, lim ®(z) =0 (4)
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Note: We have assumed A =1 and 4weg = 1.

(e) Solve Eq. (3) numerically and plot the functions ®(x), V(r) and 47r2n(r).





