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Problem set: Single electron transistor (SET)

Figure 1: The cover picture of this book (a so-called SET stability diagram) is what you
should reproduce and understand in this Sheet.

This Sheet will present the physics of the “Coulomb Blockade” effect. Differently from
the other assignments you will be asked to solve this sheet by means of numerical tech-
niques. By connecting a single metallic island to two electronic contacts and capacitive-
ly to a back-gate, one can realize a transistor-like device that allows the switching of a
current electron by electron. This device is commonly known as a single electron transi-
stor (SET). Its realization was made possible by fabricating ultrasmall capacitances (order
10−16 F) A comprehensive introduction to the SET can be found in: Electron transport in
quantum dots by L. P. Kouwenhoven et al., published in Mesoscopic Electron Transport,
edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Kluwer, 1997), available online at
http://marcuslab.harvard.edu/papers/KouwenhovenReview.pdf. Please download and read
this introduction as a background for this project.



8.1. Coulomb blockade in a nutshell

A single electron transistor (SET) is described by the following diagram:1

Here we have labelled the two tunnel junctions as L and R and the back-gate as g.
The equilibrium charge Q0 of the island can be determined classically by:

Q0 = CLVL + CRVR + CgVg (1)

The total energy of the island charged with n electrons is given by:

Ech(Q) = (Q−Q0)
2/2C∑ (2)

with C∑ = CL +CR +Cg. You can now appreciate that if C∑ is extremely small, the
energy Ec necessary to add a single electron to the island can be much larger than kBT
and become observable. Considering a discrete number of electrons n on the island
(i.e. Q = −en and Q0 = −en0), one has alternatively Ech(n) = Ec(n− n0)

2 where
Ec = e2

2C∑ . If kBT ¿ Ec, the system is electronically blocked. No extra electron

can be allocated without paying an energy cost of Ec. This is the so-called Coulomb
blockade phenomenon. When moving one electron from the left/right reservoir to
the island (raising the number of electrons on the island from n to n + 1), the total

1This Sheet is based on scripts and assignments of previous courses 2004 SS: 52251 and 2005 WS:
52853.
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energy of the system changes by:

∆EL/R(n) = Ech(n + 1)− Ech(n)− (−e)VL/R

=
e2

C∑

(
n− n0 +

1

2

)
+ eVL/R

(3)

The rate for this process at a temperature T is then determined by the Fermi golden
rule:

ΓL
n→n+1 =

1

e2RL

∫
dεL

∫
dεdotfL(εL)(1− fdot(εdot))δ(∆EL + εL − εdot) (4)

which can be integrated out via
∫

dεf(ε)(1− f(ε−E)) = E/(exp(E/kBT )− 1) to
obtain:

Γ
L/R
n→n+1 =

1

e2RL

∆EL/R(n)

exp(β∆EL/R(n))− 1
(5)

where β = 1/kBT . Analogously, one can find:

Γ
L/R
n+1→n =

1

e2RL

−∆EL/R(n)

exp(−β∆EL/R(n))− 1

Γ
L/R
n→n−1 =

1

e2RL

−∆EL/R(n− 1)

exp(−β∆EL/R(n− 1))− 1

Γ
L/R
n−1→n =

1

e2RL

∆EL/R(n− 1)

exp(β∆EL/R(n− 1))− 1

Γi→j = ΓL
i→j + ΓR

i→j

(6)

Now we define pn as the probability to find the system in a state with n electrons
on the island. This probability evolves in time due to a balance of outgoing and
incoming tunnelling processes. Using the rates for these processes (just calculated)
one can easily set up the equation

d

dt
pn = Γn+1→npn+1 + Γn−1→npn−1 − (Γn→n+1 + Γn→n−1)pn (7)

for the classical occupation probabilities in the lattice network. Such equation is
known in statistical mechanics as master equation. It is basically a first order dif-
ferential equation describing the time-evolution of the probability of the system to
occupy each one of a discrete set of states.2. The only quantum content here is the
derivation of the rates Γ’s.

One can visualize this dynamical system as a chain of states with probability flowing
in both directions:

Now, we want to find the steady state where the probabilities do not change with
time. To achieve this, it is clear that each pair of arrows in the diagram has to cancel
out exactly. This condition is called detailed balance and can be written as:

2See e.g. K. Huang, Statistical Mechanics, Wiley, 2nd edition, (1987) end of chap. 8
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Γn→n+1pn = Γn+1→npn+1 (8)

With this, we can find a simple algorithm to find all the pn:

(a) choose ng ∈ Z as starting point such that ng ≈ n0(round to nearest integer)

(b) set png = 1

(c) use the detailed balance to find recursively all other pnone by one, stopping
when pn < ε for some small predefined ε

(d) correct the normalization: pn → pn/
∑

n pn

Finally, the current from left to right through the dot can be defined by:

I = −e
∑

n

pn(ΓL
n→n+1 − ΓL

n→n−1) (9)

For a thorough theoretical introduction, see also: Single electron tunneling, Ch. 3 of
Quantum transport and dissipation, T. Dittrich, et al., (Wiley-VCH, 1998), online at
http://marcuslab.harvard.edu/papers/KouwenhovenReview.pdf

8.2. SET routine

Write a function that calculates the current I as a function of CL, CR, Cg, VL,
VR, Vg, RL, RR and the temperature T . Take special care about the units involved
in the calculations. Remember the best practice introduced before: stick to SI units
internally everywhere, define the constants once and use them everywhere explicitly. If
you find at input or output that non-SI units are more appropriate, do the conversion
right at that point and document in place what the unit is.

8.3. Test cases: I−V -characteristics

For a starting point choose the default values:
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CL = CR = 653e/V(≈ 105aF ); Cg = 145e/V
Vg = 0V

RL = RR = 10h/2e2(≈ 129k)
T = 0.1Ec/kB(≈ 0.4K)

and do the following calculations to check the program for correctness:

• Scan along V ∈ [−3 mV, 3 mV] with VR = V/2, VL = −V/2 for various
temperatures. You should get the following graph:

8.4. Coulomb oscillations

• Scan along Vg ∈ [−8 mV, 8 mV] and plot the linear conductance G = I/(VR−
VL) for the small voltages VL = −0.5 nV; VR = 0.5 nV. You should get the
following graph:
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8.5. Stability Diagrams

The figure that opens this sheet is a stability diagram i.e. a surface plot of the
differential conductance as a function of the gate voltage Vg (x axis) and bias vol-
tage V (y axis). It appears as tiling of diamond-shape regions at almost constant
conductance. The differential conductance is defined as:

G(Vg, V ) =
∂I

∂V
(10)

• Scan along Vg ∈ [−8 mV, 8 mV] and VL−VR ∈ [−3 mV, 3 mV] at T = 20 mK
You should get the following graph:

• [Kür] What is the meaning of the blue diamonds? Can you count the number
of electrons in the metallic island? How does the stability diagram changes by
raising the temperature, why? Often in experiments the tunneling rate to the
left or right electrods can be very different. Can you predict how the stability
diagram will change for example if RL ¿ RR?

8.6. Examples of codes

• A possible code is listed at the end of this Sheet. Additionally it is also available
at the url:

http://www-mcg.uni-r.de/downloads/QTKM1/SET ME.mb.

Try to understand it, to use it in the different parameter regimes and finally to
improve it!

• An example code is also offered in “ansi c”. But please note that class assistance
is only guaranteed for MATLAB coding.

http://www-mcg.uni-r.de/downloads/QTKM1/SET ME.c
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8.7. Presentation

• You will be asked to give a presentation about the numerical work and the results
on Tuesday the 27th. A central aspect of scientific work is the interpretation and
presentation of results. You will be asked to show the results of this sheet in a
short, informal presentation. To give you a smooth start, we have prepared a
first sample presentation for download at

http://www-mcg.uni-r.de/downloads/CNS/dummy-presentation.tar.gz

Download and unpack the archive. To compile the source into a PDF file:

pc12345:... make

Now modify the file to place your own results inside. Get comfortable editing
the file. The presentation uses latex-beamer, which is installed on our machi-
nes. Download and documentation at: http://latex-beamer.sourceforge.net/.Of
course you are free to choose other presentation tools, but assistance cannot
be promised. Whatever program you choose to use, make sure that you can
create a PDF. Come to the Tuesday 27.06. lecture with your presentation on a
memory stick.

8.8. Appendix: MATLAB code

clear all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Program to calculate the stability diagram in orthodox theory

%(the theory schematically presented in the Sheet number 8 of

%the course Condensed Matter Theory 1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Vgvet = [-8:0.01:8]*10^-3;

Vvet = [-3:0.01:3]*10^-3;

for k =1:length(Vgvet);

for j = 1:length(Vvet);

V = Vvet(j); % V

%minimum probability accepted as different from 0

eps = 10^-6;

CL=653; % e/V

VL=V/2; % V

CR=653; % e/V
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VR=-V/2;% V

Cg=145; % e/V

Vg=Vgvet(k);% V

RL=10; % h/2e^2

RR=10; % h/2e^2

T = 20*10^-3*(0.0258/300); %temperature in kelvin transformed in eV

Ec = 1/(2*(CL+CR+Cg)); % eV

%equilibrium charge on the island

%(approximated to the clsest integer, well, charge is quantized)

n0 = CL*VL+CR*VR+Cg*Vg;

%I reset to 0 the vectors I have (eventually) used in the previous loops;

GammaLin = 0;

GammaLout = 0;

Ppos = 0;

Ptemp=1;

%evaluation of the probabilities for P(n) for n>n0 of occupation of the

%island

i = 1;

while Ptemp>eps

%N.B. for i=1 n = floor(n0)!!!

%energy to pay to pass from n to n+1 electrons in the island entering

%from the Left

DeltaE_L = 2*Ec*(floor(n0)+i-1-n0+1/2)+VL;

%from the Right

DeltaE_R = 2*Ec*(floor(n0)+i-1-n0+1/2)+VR;

%

%Rate to go from n to n+1 electrons in the island entering

%from the Left

GammaLin(i)= 1/RL*DeltaE_L/(exp(DeltaE_L/T)-1);

%from the right

GammaRin=1/RR*DeltaE_R/(exp(DeltaE_R/T)-1);

%Rate to go from n+1 to n electrons in the island leaving

%to the Left

GammaLout(i)=1/RL*(-DeltaE_L)/(exp(-DeltaE_L/T)-1);

%to the Right

GammaRout=1/RR*(-DeltaE_R)/(exp(-DeltaE_R/T)-1);

%Total rates in and out

Gammain = GammaLin(i)+GammaRin;

Gammaout = GammaLout(i) + GammaRout;

%Probability P(n+1);

Ptemp = Ptemp*Gammain/Gammaout;
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Ppos(i) = Ptemp;

i = i+1;

end

%contribution to the current of the states with n>n0

Ipos = -[1,Ppos(1:end-1)]*GammaLin’ + Ppos*GammaLout’;

%evaluation of the probabilities for P(n) for n<n0 of occupation of the

%island

%I reset to 0 the vectors I have used in the previous while loop;

GammaLin = 0;

GammaLout = 0;

Pneg = 0;

Ptemp = 1;

i = 1;

while Ptemp>eps

%N.B. for i=1 n = floor(n0)!!!

%energy to "pay" (it can be negative and you gain!)

%to pass from n-1 to n electrons in the island entering

%from the Left

DeltaE_L = 2*Ec*(floor(n0)-i-n0+1/2)+VL;

%from the Right

DeltaE_R = 2*Ec*(floor(n0)-i-n0+1/2)+VR;

%

%Rate to go from n-1 to n electrons in the island entering

%from the Left

GammaLin(i)= 1/RL*DeltaE_L/(exp(DeltaE_L/T)-1); %2eV/h

%from the right

GammaRin=1/RR*DeltaE_R/(exp(DeltaE_R/T)-1);

%Rate to go from n to n-1 electrons in the island leaving

%to the Left

GammaLout(i)=1/RL*(-DeltaE_L)/(exp(-DeltaE_L/T)-1);

%to the Right

GammaRout=1/RR*(-DeltaE_R)/(exp(-DeltaE_R/T)-1);

%Total rates in and out

Gammain = GammaLin(i)+GammaRin;

Gammaout = GammaLout(i) + GammaRout;

%Probability P(n+1);

Ptemp = Ptemp*Gammaout/Gammain;

Pneg(i) = Ptemp;

i = i+1;

end

%contribution to the current of the states with n<n0

Ineg = -Pneg*GammaLin’+[1,Pneg(1:end-1)]*GammaLout’;

% construction of the probability distribution P(n)

P = [fliplr(Pneg),1,Ppos];

%definition of the unit conversion for the current. it is in the end

%expressed in Ampere. Notice also the normalization /sum(P)

Unitconv = 1.602*10^-19/(pi*0.6582*10^-15);

IL(j,k) = (Ipos+Ineg)/sum(P)*Unitconv;
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P = P/sum(P);

end

end

%calculation of the differential conductance

G = diff(IL,1,1)/diff(Vvet(1:2));

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%

% Graphical section

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Plot of the current as a function of the bias at zero gate voltage

figure(1)

%subplot(2,2,1)

plot(Vvet*10^3,IL(:,floor(length(Vvet)/2))*10^9)

xlabel(’V_L-V_R (meV)’,’Fontsize’,18)

ylabel(’I (nA)’,’Fontsize’,18)

title(’Current (V_g=0 V)’,’Fontsize’,18)

%Plot of the differential conductance as a function of the gate volage

%at 0 bias.

figure(2)

%subplot(2,2,2)

plot(Vgvet*10^3,G(floor(length(Vvet)/2),:)*10^6)

xlabel(’V_g (meV)’,’Fontsize’,18)

ylabel(’G (\muS)’,’Fontsize’,18)

%ylim([0 2*max(max(G))*10^6])

title(’Differential conductance (V=0 V)’,’Fontsize’,18)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Plot of the stationary current as a function of the bias voltage and

%of the gate voltage (the so called stability diagram)

figure(3)

%subplot(2,2,3)

surf(Vgvet*10^3,Vvet*10^3,IL)

%note the conversion to meV. For some funny reason

%Matlab wants the input of the surf comand like (X,Y,f(Y,X))!!!!

xlabel(’V_g (meV)’,’Fontsize’,18)

ylabel(’V_L-V_R (meV)’,’Fontsize’,18)

title(’Current’,’Fontsize’,18)

box on

axis tight

shading flat

view([0 90])

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Plot of the differential conductance as a function of the bias voltage
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%and of the gate voltage (the so called stability diagram)

figure(4)

%subplot(2,2,4)

surf(Vgvet*10^3,Vvet(1:end-1)*10^3,G)

%note the conversion to meV. For some funny reason

%Matlab wants the input of the surf comand like (X,Y,f(Y,X))!!!!

xlabel(’V_g (meV)’,’Fontsize’,18) ylabel(’V_L-V_R

(meV)’,’Fontsize’,18) title(’Differential

conductance’,’Fontsize’,18) box on axis tight shading flat view([0

90])

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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