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Problem set: Band structure: graphene and carbon nanotubes

7.1. Electronic structure of graphene

A graphene sheet is a honeycomb lattice of carbon atoms (see figure). Let the distance

A

B

between carbon atoms be a. A good model for graphene is to consider a single plane
in which there is one valence electron per carbon atom. We will use the tight-binding
approximation, in which this electron can occupy a single pz orbital at each carbon
site. Let R denote the centers of the hexagons in the honeycomb: these form the
underlying hexagonal Bravais lattice. Please notice that the latter is indeed a Bravais
lattice differently from the graphene honeycomb lattice. The unit cell spanned by
a1 and a2 contains two carbon atoms conventionally labelled as A and B atom,
located at R+vA, R+vB, as shown in the figure. Denote the tight-binding hopping
amplitude connecting these sites by t. Choose the zero of energy so that the energy
of an isolated atomic orbital is zero. The entire Hamiltonian consists of the nearest-
neighbor hopping.

(a) Find the reciprocal lattice, and construct the first Brillouin zone.

(b) Write down the tight-binding equations governing the system. How many bands
do you find? What are the energy-wavevector relations?
Hint: You will need to solve a two-by-two matrix eigenvalue problem. This exercise

was first attacked by Wallace in 1947.1

1You might want to read the original paper “P. R. Wallace, Phys. Rev. 71,
622 (1947)”. It is available online (when logged in the uni-r.de domain) under
http://link.aps.org/abstract/PR/v71/p622 . Alternatively you can refer to some more re-
cent formulation as, e.g., in Section 2.4 “Band structure of graphene” of Dr. Hauptmann’s PhD thesis
( http://www.nbi.dk/∼nygard/JonasSpeciale2003.pdf ).

http://link.aps.org/abstract/PR/v71/p622
http://www.nbi.dk/~nygard/JonasSpeciale2003.pdf


(c) Show that the Fermi energy is equal to zero, by verifying that this gives the
correct electron density. Find the set of k points for which ε(k) = 0. Show that
these correspond to the corners of the first Brillouin zone.

(d) Show that, near to a (first) Brillouin zone corner with wavevector K (note that
K is the location of a BZ corner, not a reciprocal lattice vector), the spectrum
is approximately

ε(k) ≈ ±v

√

(kx − Kx)
2 + (ky − Ky)

2
.

Determine the velocity v in terms of t and a. This behavior is intermediate
between a metal (with a Fermi surface instead of points K) and an insulator
(with a band gap). Indeed, graphite behaves as a semi-metal, with poor con-
ductivity significantly higher than in an insulator.

(e) [Kür] Graphite is composed of a stack of graphene layers identically atop one
another in the z direction (a distance d apart), and there is some small residual
hopping t⊥ between orbitals in neighboring layers at the same (x, y) position.
Sketch the Fermi surface, assuming t⊥ � t.

7.2. Electronic structure of single wall carbon nanotubes

Carbon nanotubes Carbon nanotubes are made up of a section of the graphene lattice
that has been wrapped up into a cylinder. You can specify the way the lattice is wound
up by identifying the winding vector W. The winding vector must be a Bravais lattice
vector, and so can be specified by two integers:

W = n a1 + m a2,

where n and m are integers. To construct a nanotube, take a graphene lattice and
mark one atom (either A type or B type) as the origin. Shift the origin of the vector
W on the chosen atom. The new vector W̃ will point to another atom of the same
type. Roll up the sheet perpendicular to W̃ so that the second atom sits exactly on
top of the first. You have constructed a (n,m) nanotube!
A bit of nomenclature. We can specify some special tubes said achiral : they are (n, n)
tubes which are called armchair tubes, and (n, 0) zig-zag tubes (Bruckmandl would
be probably more appropriate, but there is no mention of this in the literature yet...).
All other tubes are said chiral.

(a) Build a (5, 5) armchair tube (i.e. with scissors and adhesive tape!) by making
use of the provided transparencies.2

(b) Construct a (8, 0) zig-zag tube.

(c) Build a chiral (7, 3) tube.

2A pdf is also available under the following (clickable) link
http://www-MCG.uni-R.de/downloads/graphene.pdf .
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http://www-MCG.uni-R.de/downloads/graphene.pdf


(d) Let’s determine the band structure of a nanotube. To do so, impose periodic
boundary conditions on the wavefunction in the direction around the cylinder.
Show that this means that k · W = 2π`, where ` is an integer.

(e) Draw the graphene first Brillouin zone from the previous problem, indicating (a)
the points K (where the energy of the graphene layer is zero, E = EF) and
(b) the lines given by the quantization conditions –introduced in the previous
point– for (n,m) = (3, 3) and (n,m) = (2, 0).

(f) Plot the energy versus kx for the allowed values of ky in the (3,3) tube above.
Then plot the energy versus versus ky for the allowed values of kx in the (2, 0)
tube.
For each case, is the nanotube metallic or insulating according to band theory?

(g) For which n and m are the Brillouin zone corners allowed wavevectors for a
nanotube? Show that the tubes satisfying this condition are metallic!

(h) [Kür] In reality, one expects that the curvature of the nanotube cylinder affects
the tight-binding matrix elements slightly. Consider this effect for the special
cases of armchair, and zig-zag tubes. In these cases, the curvature effect can
be modeled by making the hopping matrix element slightly different (= t′) on
transversal bonds (parallel to the winding vector in the case of the armchair
tubes) than the other ones (= t). How does this affect the metallicity of the
armchair and zig-zag tubes?
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