Assignments to Condensed Matter Theory I
 Sheet 6

G. Cuniberti
(Phy 4.1.29)
Room H35
A. Donarini
(Phy 3.1.24)
Tue 06.06 (h 10.15)

Problem set: Second quantization II (fermionic gymnastic)

6.1. Fermionic commutation relations

The basis commutation relations for fermion creation and annihilation operators

$$
\left[a, a^{\dagger}\right]_{+}=1, \quad[a, a]_{+}=0, \quad a|0\rangle=0
$$

where $[A, B]_{+}=A B+B A,|0\rangle$ the vacuum, and \dagger indicates the Hilbert space adjoint.
(a) From these, determine all normalized eigenstates $|n\rangle$ of $a^{\dagger} a$, and show that they have the following properties,

$$
\begin{aligned}
a^{\dagger} a|n\rangle & =n|n\rangle, \quad n=0,1 \\
a|1\rangle & =|0\rangle \\
a^{\dagger}|0\rangle & =|1\rangle \\
\langle n, m\rangle & =\delta_{n m}
\end{aligned}
$$

(b) Compute $F=-k_{\mathrm{B}} T \ln Z$ with

$$
Z=\operatorname{Tr}\left\{\exp \left(-\frac{\hbar \omega}{k_{\mathrm{B}} T} a^{\dagger} a\right)\right\}=\sum_{n}\langle n| \exp \left(-\frac{\hbar \omega}{k_{\mathrm{B}} T} a^{\dagger} a\right)|n\rangle
$$

6.2. [Kür] Yukawa-correlated fermions

Consider a system of fermions created by the field $\psi^{\dagger}(\mathbf{r})$ interacting under the Yukawa potential

$$
V_{\mathrm{Y}}(\mathbf{r}) \equiv V_{\mathrm{Y}}(r)=\frac{A}{r} \exp (-\alpha r) \quad(\alpha>0)
$$

(a) Write the Hamiltonian in second quantized form, using the position basis.
(b) Write the Hamiltonian in second quantized notation in the momentum basis, where

$$
c_{\mathbf{k}}^{\dagger}=\int \mathrm{d}^{3} r \psi^{\dagger}(\mathbf{r}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}} .
$$

Hint: You will find it helpful to derive the Fourier representation

$$
V_{\mathrm{Y}}(\mathbf{r})=\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} \mathrm{e}^{\mathrm{i} \mathbf{q} \cdot \mathbf{r}} \frac{4 \pi A}{\left(q^{2}+\alpha^{2}\right)}
$$

6.3. Calculating with fermion operators

(a) Similarly to exercise 3.3, simplify the following expressions involving the fermionic operators a, and a^{\dagger}

$$
\begin{array}{rc}
g_{1}\left(\alpha ; a, a^{\dagger}\right)=\mathrm{e}^{-\alpha a^{\dagger}} a \mathrm{e}^{\alpha a^{\dagger}}, & h_{1}\left(\alpha ; a, a^{\dagger}\right)=\mathrm{e}^{-\alpha a} a^{\dagger} \mathrm{e}^{\alpha a}, \\
g_{2}\left(\alpha ; a, a^{\dagger}\right)=\mathrm{e}^{-\left(\alpha^{*} a^{\dagger}-\alpha a\right)} a \mathrm{e}^{\left(\alpha^{*} a^{\dagger}-\alpha a\right)}, & h_{2}\left(\alpha ; a, a^{\dagger}\right)=\mathrm{e}^{-\left(\alpha^{*} a^{\dagger}-\alpha a\right)} a^{\dagger} \mathrm{e}^{\left(\alpha^{*} a^{\dagger}-\alpha a\right)}, \\
g_{3}\left(\alpha ; a, a^{\dagger}\right)=\mathrm{e}^{-\alpha a^{\dagger} a} a \mathrm{e}^{\alpha a^{\dagger} a}, & h_{3}\left(\alpha ; a, a^{\dagger}\right)=\mathrm{e}^{-\alpha a^{\dagger} a} a^{\dagger} \mathrm{e}^{\alpha a^{\dagger} a}
\end{array}
$$

(b) Show that the operators s^{+}, s^{-}, and s^{z}, defined in terms of the fermionic operators $a_{\uparrow, \downarrow}^{\dagger}$ and $a_{\uparrow, \downarrow}$ (the indices \uparrow, \downarrow characterize the electron possible spin states)

$$
\begin{aligned}
s^{+} & =\hbar a_{\uparrow}^{\dagger} a_{\downarrow} \\
s^{-} & =\hbar a_{\downarrow}^{\dagger} a_{\uparrow} \\
s^{z} & =\frac{\hbar}{2}\left(a_{\uparrow}^{\dagger} a_{\uparrow}-a_{\downarrow}^{\dagger} a_{\downarrow}\right)
\end{aligned}
$$

satisfy the commutation relations for spin components, that is

$$
\begin{aligned}
{\left[s^{+}, s^{-}\right] } & =2 \hbar s^{z} \\
{\left[s^{ \pm}, s^{z}\right] } & =\mp \hbar s^{ \pm}
\end{aligned}
$$

Hint: Use the fact that

$$
\begin{aligned}
{[A, B C] } & =[A, B] C+B[A, C] \\
{[A B, C] } & =A[B, C]_{+}-[A, C]_{+} B
\end{aligned}
$$

