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Problem set: Spin statistics and finite temperatures

In the real world we never encounter zero temperature. Hence we will often need to use
statistical physics and thermodynamics. In classical mechanics the state of a system is
defined by the position and momentum of all its degrees of freedom. For example the state
of N classical particles is defined by the set of 6N coordinates xn,pn with n = 1, . . . , N in
the phase space Γ. The observables O(xn,pn) are functions of these coordinates and their
thermal averages can be written as:

〈O〉T =
∞

∑

N=0

∫

Γ

dΓρ(xn,pn, N)O(xn,pn)

where, according to the Gibbs formula, ρ(xn,pn, N) ≡ (1/Z) exp[−β(H(xn,pn) − µN)],
β = 1

kBT
and dΓ ≡

∏N

n=1
dxndpn. Z is the grancanonical partition function:

Z =
∞

∑

N=0

∫

Γ

dΓ exp[−β(H(xn,pn) − µN)]

The quantum mechanical version of the thermal average is:

〈O〉T =
∞

∑

N=0

TrN{ρ̂Ô}

where the operator ρ̂ is defined as:

ρ̂ = (1/Z) exp[−β(Ĥ − µN̂)]

and the trace TrN is taken only with respect to states with N number of particles. The
grancanonical partition function, in the quantum version, reads:

Z =
∞

∑

N=0

TrN{exp[−β(Ĥ − µN̂)]}

4.1. Many (non-interacting) bosons

Let us consider the Hamiltonian for non-interacting bosons:

HB =
∑

λ

~ωλ

(

b†λbλ +
1

2

)

(1)



where the quantum number λ completely defines the single particle state. For example
in the case of a system of phonons λ = (q,m) where q is the momentum and m the
branch index. The chemical potential µ is taken to be lower than the lowest boson
energy and independent from the temperature.

(a) Calculate the grancanonical partition function Z for this system.

(b) What is the average number of bosons in the state defined by the quantum
number λ? This is called Bose-Einstein distribution nBE.

(c) Plot nBE(ωλ, T, µ) vs. ωλ for different temperatures.

(d) What is the average energy U of the system?
Hint: U = − ∂

∂β
ln Z + µ

β
∂
∂µ

ln Z.

(e) [Kür] Calculate the specific heat cV = ∂U
∂T

using the Einstein model (i.e. only
one branch with dispersion ω(q) = ω0).

(f) [Kür] Calculate the specific heat cV at low temperatures for phonons with linear
dispersion relation ω(q) = v‖q‖ in 1D, 2D, 3D.
Hint: It is not (so) difficult to show that:

cV = NkB

∫ ∞

0

dω

(

~ω

2kBT

)2 DOS(ω)

sinh2(~ω/2kBT )

4.2. Many (non-interacting) fermions

Let us now consider the Hamiltonian for non-interacting fermions:

HF =
∑

λ

ελc
†
λcλ (2)

where λ is a good quantum number for single particle states.

(a) Calculate the grancanonical partition function Z for this system.
Hint: Remember that for Fermions the Pauli exclusion principle holds. Formally

{c†, c†} = 0 which implies that a single particle state can never be occupied by more

than one fermion.

(b) Calculate the average number of fermions in the state defined by the quantum
number λ. You just rediscover the Fermi-Dirac distribution nFD.

(c) Plot nFD(ελ, T, µ) vs. ελ for different temperatures.

(d) What is the average energy of the system?
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