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Problem set: Second quantization (bosonic gymnastic)

3.1. Bosonic commutation relations

Refresh the physics of the simple harmonic oscillator

Ĥ =
p2

2m
+

mω2x2

2
,

which can be written in “second quantized” form, by expressing x and p in terms of
boson creation and annihilation operators:

Ĥ = ~ω

(

a†a +
1

2

)

, a† =
1√
2~

(√
mω x̂ − i

p̂√
mω

)

.

(a) Show that the following basis commutation relations hold

[a, a†] = 1, [a, a] = 0, a |0〉 = 0

where [A,B] = AB − BA, |0〉 the vacuum, and † indicates the Hilbert space
adjoint. From these, determine all normalized eigenstates |n〉 (〈n,m〉 = δnm)
of a†a, and show that they have the following properties,

a†a |n〉 = n |n〉 , n = 0, 1, 2, . . .

a |n〉 =
√

n |n − 1〉 ,

a† |n〉 =
√

n + 1 |n + 1〉 .

(b) Compute F = −kBT ln Z with
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(c) Plot F against temperature for different values of ~ω.



3.2. Calculating with bosonic operators

(a) Show that for two non commuting bosonic operators A, and B it holds

[A,Bn] =
n−1
∑

k=0

Bk [A,B] Bn−1−k.

(b) Prove —using (a)— that for bosonic operators b, b†

[

b, (b†)n
]

= n(b†)n−1 =
∂(b†)n

∂b†
,

[

b†, bn
]

= −nbn−1 = −∂bn

∂b
,

[

b, f(b†)
]

=
∂f(b†)

∂b†
,

[

b†, f(b)
]

= −∂f(b)

∂b
,

where the functions f(b†) and f(b) are representable as a power series ([b, b†] =
1).

(c) Using the previous arguments (Ex 3.2 b)) show that the following relations hold

g1(α; b, b†) = e−αb†beαb† = b + α, h1(α; b, b†) = e−αbb†eαb = b† − α.

In a similar fashion, simplify the following expressions

g2(α; b, b†) = e−(α∗b†−αb)be(α∗b†−αb), h2(α; b, b†) = e−(α∗b†−αb)b†e(α∗b†−αb),

g3(α; b, b†) = e−αb†bbeαb†b, h3(α; b, b†) = e−αb†bb†eαb†b.

Hint: Introduce a dummy variable λ as in

gi(λ, α; b, b†) = e−λf(α;b,b†)beλf(α;b,b†)

and calculate the derivative ∂gi(λ, α; b, b†)/∂λ. Same thing for hi(λ, α; b, b†).

(d) Prove the identity

eαb†eβb = exp

(

αb† + βb − αβ

2

)

Hint: Show first that the quantity

f(λ) = eλαb†eλβbeλ2 αβ

2

satisfies the following relation

∂f(λ)

∂λ
=

(

αb† + βb
)

f(λ).
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3.3. Cubic correction to the q-harmonic oscillator (Kür)

Calculate the correction to the frequency of an oscillator in its ground state due
to a cubic anharmonicity. It arises by expanding the adiabatic potential beyond the
harmonic terms. This corresponds to an oscillator problem with the Hamiltonian

H = ~ω0

(

a†a +
1

2

)

+ ∆(a† + a)3 .

Note: In order to have a bounded Hamiltonian (with converging wave functions at large

distances) one would need fourth order corrections in the spring energy. Still, the cubic

correction presented in this exercise provides, for low energies, a relatively straight forward

insight into the physics of the quantum anharmonic oscillator. You might want to read the

original paper “C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969)” to learn more

on this fundamental issue. It is available online (when logged in the uni-r.de domain)

under http://prola.aps.org/abstract/PR/v184/i5/p1231 1

(a) Treat the anharmonicity by bringing the third order terms in the phonon opera-
tors first into normal order and reduce them by replacing the number operator
whenever possible by the thermal expectation value n(T ).

Hint: The cubic anharmonicity ∆(a† + a)3 is first written in normal order

(a† + a)3 = a†3 + 3a†2a + 3(a† + a) + 3a†a2 + a3

and then truncated by replacing a†a → 〈a†a〉 = n(T ) and omitting the terms a†3

and a3. Thus the hamiltonian reduces to

H = ~ω0

(

a†a +
1

2

)

+ ∆(T )(a† + a) , with ∆(T ) = 3∆
(

n(T ) + 1
)

.

(b) Solve the resulting Hamiltonian by means of the Brillouin-Wigner perturbation
theory 1.

Hint: This is obtained by calculating now the second order corrections to the oscil-
lator ground state |n〉 with n = 0 due to the anharmonicity, which by making use of
〈0|a|1〉〈1|a†|0〉 = 1 reads in Brillouin-Wigner perturbation theory

ε = E0 −
~ω0

2
=

∆2(T )

ε − ~ω0
.

Alternatively, you can exactly solve the problem by using one expansion of Ex.3.2(c).

1W. Nolting Grundkurs Theoretische Physik 5/2, page 182 3rd edition, Springer (2001).
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(c) Find the lowest eigenvalue and show that the smaller solution of the quadratic
equation in ε

E0 =
1

2
~ω0 −

∆2(T )

~ω0

expresses a zero-point energy which decreases as ∆(T ) increases due to thermal
phonon excitation with the temperature. This is the behavior of a soft mode.
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