All electrical spin preparation in a triple dot I-SET

Andrea Donarini

Georg Begemann, and Milena Grifoni

University of Regensburg, Germany
Interference SET...

- Weak coupling
- Coulomb interaction
- Nanometer scale
- Low temperature

Coulomb blockade

- Rotational symmetry

Orbitally degenerate states

- Contact geometry

Contact symmetry breaking

$h\Gamma \ll k_B T \ll \Delta E_{ex}$

$E_1 = E_2$

$\frac{\gamma_{1L}}{\gamma_{2L}} \neq \frac{\gamma_{1R}}{\gamma_{2R}}$
... with a magnetic flavour

- Coulomb interaction
- Nanometer scale

Exchange splitting

- Parallel ferromagnetic leads

Spin symmetry breaking

$E_{\text{triplet}} \neq E_{\text{singlet}}$

$\Gamma_{\alpha \uparrow} \neq \Gamma_{\alpha \downarrow}$

The interplay between orbital and spin degree of freedom

excited state blocking and all-electrical spin control on the system.
Macroscopic interference

Young's light-interference experiment (1801)

Double-slit experiment with interference of single electrons (1961)
The “two paths” in the ISET

Particle Number

N

N + 1

Energy
Current blocking

Interference Blockade --ground states--
Interference Blockade --excited state--

Coulomb Blockade
Polarized leads

Parallel polarized leads
No magnetic field on the system

All-electric spin control

S = -1_z
S = 0_z
S = 1_z

\[eV_b \quad ||b|| \]

SFB 689 meeting - Niederalteich - 30.09.2010
The Hamiltonian

\[H = H_{\text{sys}} + H_{\text{leads}} + H_{\text{tun}} \]

\[H_{\text{sys}} = \xi_0 \sum_{i\sigma} d_{i\sigma}^{\dagger} d_{i\sigma} + b \sum_{i\sigma} \left(d_{i\sigma}^{\dagger} d_{i+1\sigma} + d_{i+1\sigma}^{\dagger} d_{i\sigma} \right) + U \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) + V \sum_{i} \left(n_{i\uparrow} + n_{i\downarrow} - 1 \right) \left(n_{i+1\uparrow} + n_{i+1\downarrow} - 1 \right) \]

\[H_{\text{tun}} = t \sum_{\alpha k \sigma} \left(c_{\alpha k \sigma}^{\dagger} d_{\alpha \sigma} + d_{\alpha \sigma}^{\dagger} c_{\alpha k \sigma} \right) \]

\[H_{\text{leads}} \quad \text{Ferromagnetic leads with equal parallel polarization} \]

Extended Hubbard Hamiltonian with on-site and nearest neighbors Coulomb interaction

Tunnelling restricted to the dot closest to the corresponding lead

SFB 689 meeting - Niederalteich - 30.09.2010
Generalized Master Equation

- We start with the **Liouville** equation:
 \[\dot{\rho} = -\frac{i}{\hbar} [\mathcal{H}, \rho] \]

- We consider a reduced density matrix block-diagonal in spin, energy and particle number. We keep coherencies between orbitally degenerate states.

- The **Generalized Master Equation** is an equation of motion for the reduced density matrix. We calculate it in the lowest non-vanishing order in the coupling to the leads and in the Markov approximation. It reads:

\[
\dot{\sigma} = -\frac{i}{\hbar} [H_{\text{sys}}, \sigma] - \frac{i}{\hbar} [H_{\text{eff}}, \sigma] + \mathcal{L}_{\text{tun}} \sigma
\]

 \[\begin{align*}
 \text{Coherent dynamics} & & \text{Effective internal dynamics} & & \text{Tunnelling dynamics}
 \end{align*}\]
The effective Hamiltonian

The effective Hamiltonian is expressed in terms of **angular momentum** operators and **renormalization frequencies**:

\[H_{\text{eff}} = \sum_{\alpha S_z} \omega_{\alpha S_z} L_{\alpha}, \]

In particular in the Hilbert space of the 2 particle first excited states

\[L_{\alpha} = \frac{\hbar}{2} \begin{pmatrix} \frac{1}{\epsilon} & e^{i2|\ell|\phi_{\alpha}} \\ e^{-i2|\ell|\phi_{\alpha}} & 1 \end{pmatrix} \]

\[\omega_{\alpha S_z} = \frac{1}{\pi} \sum_{\sigma' \{E\}} \Gamma_{\alpha \sigma'}^{0} \left[\langle 2_{1} \ell S_{z} | d_{M \sigma'}^{\dagger} | 3\{E\} \rangle \langle 3\{E\} | d_{M \sigma'}^{\dagger} | 2_{1} - \ell S_{z} \rangle p_{\alpha} (E - E_{21}) + \langle 2_{1} \ell S_{z} | d_{M \sigma'}^{\dagger} | 1\{E\} \rangle \langle 1\{E\} | d_{M \sigma'}^{\dagger} | 2_{1} - \ell S_{z} \rangle p_{\alpha} (E_{21} - E) \right] \]

Bias and gate dependent
Blocking conditions

The interference blocking state:

• is a linear combination of degenerate system eigenstates

• is achievable from the global minimum via a finite number of allowed transitions

• has vanishing tunnelling amplitudes for all energetically allowed outgoing transitions

\[\mathcal{L}_{\text{tun}} \sigma_B = 0 \]

• is an eigenstate of the effective Hamiltonian

\[[H_{\text{eff}}, \sigma_B] = 0 \]
Many-body spectrum

Orbital degeneracy × Spin degeneracy

Orbital degeneracy produces interference blocking
Excited state blocking

Source transition
Drain transition

1x2
1x1

N=1
N=2

Coulomb Blockade

N = 2

SFB 689 meeting - Niederalteich - 30.09.2010
Excited state blocking

Source transition

Drain transition

V_g

$N = 1$

$N = 2$

$N = 2$

2×3

1×2

1×1

System

Current

$2 \leftrightarrow 3 \Rightarrow$

$1 \leftrightarrow 2 \Leftarrow$

$1 \leftrightarrow 2 \Leftarrow$

$1 \leftrightarrow 2 \Leftarrow$

SFB 689 meeting - Niederalteich - 30.09.2010
Excited state blocking

Three linear combinations of 2-particle excited states are coupled ONLY to the source.
Triplet splitting

The states decoupled from the right lead are eigenstates of L_R. They are eigenstates of H_{eff} only if

$$\omega_L s_z = 0$$
Quasi-degeneracy

The minimal necessary condition is quasi-degeneracy:

\[\delta E \ll \hbar \Gamma \]

The two N+1 particle states are populated simultaneously and cannot be resolved by the dynamics.
Conclusions

• Symmetric nanojunctions have an orbitally degenerate many-body spectrum

• Destructive interference between orbitally degenerate states leads to the formation of ground- as well as excited- interference blocking states

• Exploiting the interplay of interference blocking and Coulomb interaction we could achieve all-electrical spin control of a triple dot junction

References:

G. Begemann, D. Darau, AD, and M. Grifoni PRB 77, 201406(R) (2008)
D. Darau, G. Begemann, AD, and M. Grifoni PRB 79, 235404 (2009)
AD, G. Begemann, and M. Grifoni Nano Lett. 9, 2897 (2009)
Thanks

...and you for your attention!