Interference blockade in symmetric nano-junctions

Andrea Donarini

Georg Begemann, Dana Darau and Milena Grifoni

University of Regensburg, Germany

ICMM - Madrid - 09.04.2010
Macroscopic interference

Young's light-interference experiment (1801)

Double-slit experiment with interference of single electrons (1961)
Interference SET

The interference occurs between transmission paths involving orbitally (quasi-)degenerate states
(Benzene) ISET...

- Weak coupling
- Coulomb interaction
- Molecular size
- Low temperature

- Rotational symmetry

- Contact geometry

\[h\Gamma \ll k_B T \ll \Delta E_{ex} \]

\[E_1 = E_2 \]

\[\frac{\gamma_{1L}}{\gamma_{2L}} \neq \frac{\gamma_{1R}}{\gamma_{2R}} \]
... with a magnetic flavour

- **Coulomb** interaction
- **Molecular size**

\[E_{\text{triplet}} \neq E_{\text{singlet}} \]

- Parallel **ferromagnetic** leads

\[\Gamma_{\alpha\uparrow} \neq \Gamma_{\alpha\downarrow} \]

Exchange splitting

Spin symmetry breaking

The interplay between orbital and spin degree of freedom allows all-electrical spin control on the junction.
The “two paths” in the ISET
Coulomb blockade

- **Gating** of 2 nm sized molecule
- **Weak coupling** realization with specific anchor groups

Symmetry breaking contacts

Para configuration

Meta configuration

The Hamiltonian

\[
H = H_{\text{Sys}} + H_{\text{leads}} + H_{\text{tun}}
\]

\[
H_{\text{Sys}} = \frac{H_{\text{ben}}}{H_{\text{TD}}}
\]

\[
H_{\text{leads}} = \sum_{\alpha k \sigma} (\epsilon_k - \mu_\alpha) c_{\alpha k \sigma}^\dagger c_{\alpha k \sigma}
\]

\[
H_{\text{tun}} = t \sum_{\alpha k \sigma} \left(d_{\alpha \sigma}^\dagger c_{\alpha k \sigma} + c_{\alpha k \sigma}^\dagger d_{\alpha \sigma} \right)
\]
Interacting isolated benzene

- The Pariser-Parr-Pople Hamiltonian for isolated benzene reads:

\[
H_{\text{ben}}^0 = \xi_0 \sum_{i\sigma} d_{i\sigma}^\dagger d_{i\sigma} + b \sum_{i\sigma} \left(d_{i\sigma}^\dagger d_{i+1\sigma} + d_{i+1\sigma}^\dagger d_{i\sigma} \right) + U \sum_i (n_{i\uparrow} - \frac{1}{2})(n_{i\downarrow} - \frac{1}{2}) + V \sum_i (n_{i\uparrow} + n_{i\downarrow} - 1)(n_{i+1\uparrow} + n_{i+1\downarrow} - 1)
\]

- The size of the Fock space for the many-body system \(4^6 = 4096\) since for each site there are 4 possibilities: \(|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle\)

- Within this Fock space we diagonalize exactly the Hamiltonian.
Symmetry of the ground states

<table>
<thead>
<tr>
<th>N</th>
<th>Degeneracy</th>
<th>GS energy[eV] (at $\xi = 0$)</th>
<th>GS symmetry representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A_{1g}</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-22</td>
<td>A_{2u}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-42.25</td>
<td>A_{1g}</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-57.42</td>
<td>E_{1g}</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-68.875</td>
<td>A_{2g}</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>-76.675</td>
<td>E_{1g}</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-81.725</td>
<td>A_{1g}</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>-76.675</td>
<td>E_{2u}</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>-68.875</td>
<td>A_{2g}</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>-57.42</td>
<td>E_{2u}</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-42.25</td>
<td>A_{1g}</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>-22</td>
<td>B_{2g}</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>A_{1g}</td>
</tr>
</tbody>
</table>

Rotation phase factors

Under rotation of an angle $\phi = \frac{n\pi}{3}$

- $R_{\phi}|6_g\rangle = |6_g\rangle$ No phase acquired
- $R_{\phi}|7_g \ell\rangle = e^{-i\ell\phi}|7_g \ell\rangle$ for $\ell = \pm 2$

\[
\ell = +2 \quad \exp\left(\frac{i2\pi}{3}\right)
\]

\[
\ell = -2 \quad \exp\left(-\frac{i2\pi}{3}\right)
\]
Generalized Master Equation

- We start with the **Liouville** equation:
 \[\dot{\rho} = -\frac{i}{\hbar} [\mathcal{H}, \rho] \]

- We consider a reduced density matrix **block-diagonal** in spin, energy and particle number. We keep coherencies between **orbitally** degenerate states.

- The **Generalized Master Equation** is an equation of motion for the reduced density matrix. We calculate it in the lowest non-vanishing order in the coupling to the leads and in the Markov approximation. It reads:

\[
\dot{\sigma} = -\frac{i}{\hbar} [H_{\text{sys}}, \sigma] - \frac{i}{\hbar} [H_{\text{eff}}, \sigma] + \mathcal{L}_{\text{tun}} \sigma
\]

Coherent dynamics **Effective internal dynamics** **Tunnelling dynamics**
The effective Hamiltonian is expressed in terms of angular momentum operators and renormalization frequencies:

\[H_{\text{eff}} = \sum_{\alpha \sigma} \omega_{\alpha \sigma} L_{\alpha} \]

In particular in the Hilbert space of the 7 particle ground states

\[L_{\alpha} = \frac{\hbar}{2} \begin{pmatrix} 1 & e^{i2|\ell|\phi_\alpha} \\ e^{-i2|\ell|\phi_\alpha} & 1 \end{pmatrix} \]

\[\omega_{\alpha \sigma} = \frac{1}{\pi} \sum_{\sigma'} \Gamma_{\alpha \sigma}^{0} \left[\langle 7_g \ell \sigma | d_{M \sigma'}^{\dagger} | 8 \{ E \} \rangle \langle 8 \{ E \} | d_{M \sigma'}^\dagger | 7_g m \sigma \rangle p_\alpha (E - E_{7_g}) + \langle 7_g \ell \sigma | d_{M \sigma'}^{\dagger} | 6 \{ E \} \rangle \langle 6 \{ E \} | d_{M \sigma'}^{\dagger} | 7_g m \sigma \rangle p_\alpha (E_{7_g} - E) \right] \]
Current operator

- **Current**: using the GME we find the **operator**:

\[
\hat{I}_L = \Gamma_L \sum_{N E \tau} P_{N E} \left[d_{L \tau} f_L^+ (H^0_{\text{ben}} - E) d_{L \tau}^+ - d_{L \tau}^+ f_L^- (E - H^0_{\text{ben}}) d_{L \tau} \right] P_{N E}.
\]

and thus calculate the **stationary current**:

\[
I_L = \text{Tr}\{\sigma_{\text{stat}} \hat{I}_L\} = -I_R
\]
Para vs. Meta

ICMM - Madrid - 09.04.2010
Conductance suppression

A: non-degenerate ↔ B: non-degenerate → Equal

A: non-degenerate ↔ E: degenerate → Suppressed

ICMM - Madrid - 09.04.2010
Destructive interference

\[\Lambda = \left| \sum_{nm, \tau} \langle N, n | d_{L, \tau} | N + 1, m \rangle \langle N + 1, m | d_{R, \tau} | N, n \rangle \right|^2 \]

\[\Lambda = \left| \sum_{nm, \tau} | \langle N, n | d_{L, \tau} | N + 1, m \rangle |^2 e^{i \phi_{nm}} \right|^2 \]

\[d_{R, \tau} = R_{\phi}^\dagger d_{L, \tau} R_{\phi} \]

In particular for the transition 6 -7 in the meta configuration:

\[\Lambda = \left| \langle 6_g | d_{L, \tau} | 7_g, +2, \tau \rangle \right|^2 e^{i \frac{2\pi}{3}} + \left| \langle 6_g | d_{L, \tau} | 7_g, -2, \tau \rangle \right|^2 e^{-i \frac{2\pi}{3}} \right|^2 \]

\[\begin{array}{c}
\text{ICMM - Madrid - 09.04.2010}
\end{array} \]
The 8 electrons “anomaly”

Mirror symmetry of the para-configuration

The tunnelling preserves this mirror symmetry: the lowest 8 electron state involved in transport is the mirror-symmetric (first excited) state with E_{2g} symmetry.
NDC: the role of coherences

- The 7 particle ground state has spin and orbital degeneracies;

- **Physical basis**: the basis that diagonalizes the stationary density matrix;

- The physical basis depends on the bias: in whatever reference basis, coherences are essential for a correct description of the system;

- The visualization tool: position resolved transition probability to the physical basis:

\[
P(x, y; \ell \tau) = \lim_{L \to \infty} \sum_\sigma \frac{1}{2L} \int_{-L/2}^{L/2} dz |\langle 7_g \ell \tau | \psi_\sigma^\dagger(\vec{r}) | 6_g \rangle|^2
\]
Interference blockade

Geometry

Blocking state

Non-blocking state

I-V for transition 6 - 7

Energetics

Current onset

Coulomb blockade

Interference blockade

The blocking state is an eigenstate of the effective Hamiltonian

$\omega_{L\sigma} = 0$
Normal vs. ferromagnetic leads
Normal vs ferromagnetic leads

Current

ωL_0

Bias voltage

ICMM - Madrid - 09.04.2010
Level renormalization in presence of polarized leads

We obtain a difference in the renormalization frequencies for the 2 spin directions linear in the polarization of the leads:

\[\omega_{\alpha\uparrow} - \omega_{\alpha\downarrow} = 2\tilde{\Gamma}_\alpha p_\alpha \frac{1}{\pi} \sum_{\{E\}} \left(\langle 7_g \ell \uparrow | d_{M\uparrow} | 8\{E\} \rangle \langle 8\{E\} | d_{M\uparrow}^\dagger | 7_g m \uparrow \rangle p_\alpha (E - E_{7g}) + \langle 7_g \ell \uparrow | d_{M\uparrow} | 6\{E\} \rangle \langle 6\{E\} | d_{M\uparrow}^\dagger | 7_g m \uparrow \rangle p_\alpha (E_{7g} - E) - \langle 7_g \ell \uparrow | d_{M\downarrow} | 8\{E\} \rangle \langle 8\{E\} | d_{M\downarrow}^\dagger | 7_g m \uparrow \rangle p_\alpha (E - E_{7g}) - \langle 7_g \ell \uparrow | d_{M\downarrow}^\dagger | 6\{E\} \rangle \langle 6\{E\} | d_{M\downarrow} | 7_g m \uparrow \rangle p_\alpha (E_{7g} - E) \right) \]

The splitting of the level renormalization depends crucially on the Coulomb interaction on the molecule and vanishes in absence of exchange.
Selective Interference Blocking

AD, G. Begemann, and M. Grifoni *Nano Lett.* 9, 2897 (2009)
Robustness

• We have tested the robustness of the effects against:

 – Residual potential drop on the benzene molecule (in weak coupling to the leads the potential drop is concentrated at the contacts)

 – On-site energy renormalization of the contact atom due to different anchor groups

 – Lifting of the electronic degeneracy due to deformation (static Jahn-Teller effect)

• The minimal necessary condition is quasi-degeneracy:

\[\delta E \ll \hbar \Gamma \]
Blocking conditions

The interference blocking state:

- is a linear combination of (quasi-)degenerate system eigenstates
- is achievable from the global minimum via a finite number of allowed transitions
- has vanishing tunnelling amplitudes for all energetically allowed outgoing transitions

\[L_{\text{tun}} \sigma_B = 0 \]

- is an eigenstate of the effective Hamiltonian

\[[H_{\text{eff}}, \sigma_B] = 0 \]
The triple dot ISET

\[H = H_{\text{sys}} + H_{\text{leads}} + H_{\text{tun}} \]

\[H_{\text{sys}} = \xi_0 \sum_{i\sigma} d_{i\sigma}^\dagger d_{i\sigma} + b \sum_{i\sigma} \left(d_{i\sigma}^\dagger d_{i+1\sigma} + d_{i+1\sigma}^\dagger d_{i\sigma} \right) \]
\[+ U \sum_i \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) \]
\[+ V \sum_i \left(n_{i\uparrow} + n_{i\downarrow} - 1 \right) \left(n_{i+1\uparrow} + n_{i+1\downarrow} - 1 \right) \]

\[H_{\text{tun}} = t \sum_{\alpha k \sigma} \left(c_{\alpha k \sigma}^\dagger d_{\alpha \sigma} + d_{\alpha \sigma}^\dagger c_{\alpha k \sigma} \right) \]

Extended Hubbard Hamiltonian with on-site and nearest neighbors Coulomb interaction

Tunnelling restricted to the dot closest to the corresponding lead

Ferromagnetic leads with equal parallel polarization
Stability diagram

Interference Blockade --ground states--

Interference Blockade --excited state--

Coulomb Blockade

ICMM - Madrid - 09.04.2010
Polarized leads

Parallel polarized leads
No magnetic field on the system
All-electric spin control
Many-body spectrum

Orbital degeneracy
Spin degeneracy

Orbital degeneracy produces interference blocking
Excited state blocking

Source transition
Drain transition

2x3 System

Coulomb Blockade

N = 2

V_g

N = 1

N = 2
Excited state blocking

Source transition
Drain transition

2x3

1x2

1x1
System

N=1
N=2

N=2

Current

V_g

V_o

2_1 \leftrightarrow 3_0
1_0 \leftrightarrow 2_1
1_1 \leftrightarrow 2_1
1_0 \leftrightarrow 2_0

ICMM - Madrid - 09.04.2010
Excited state blocking

- Source transition
- Drain transition

2x3

Interference Blockade

1x2

N=1

1x1

System

N=2

Three linear combinations of 2-particle excited states are coupled ONLY to the source.
Triplet splitting

The states decoupled from the right lead are eigenstates of L_R. They are eigenstates of H_{eff} only if

$$\omega_L S_z = 0$$
Conclusions

- The interplay between electron-electron interaction and orbital symmetry is important to understand transport through an ISET;

- **Destructive interference** between degenerate states implies current blocking at specific bias voltages.

- In presence of parallel ferromagnetic leads the **current blocking is spin-selective**. We obtain all-electrical spin control on the junction.

- **Coherences** between degenerate states are essential to capture the interference effects in an ISET.

- Interference is **robust** against symmetry breaking.
Thanks

Georg Begemann
Milena Grifoni
Dana Darau

...and you for your attention!

References:

G. Begemann, D. Darau, AD, and M. Grifoni PRB 77, 201406(R) (2008)
D. Darau, G. Begemann, AD, and M. Grifoni PRB 79, 235404 (2009)
AD, G. Begemann, and M. Grifoni Nano Lett. 9, 2897 (2009)

ICMM - Madrid - 09.04.2010