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FOREWORD

On May 6, 2000, Rajat Bhaduri will celebrate his 65th birthday. At the same time, he
will retire from his official faculty position at the Department of Physics and Astronomy
of the McMaster University. We know that he will not retire from physics. But there is
good reason to congratulate him on this day, and to thank him for the many original and
inspiring contributions he has made to physics over the last 38 years. Most of them he
developed with colleagues and friends all over the world.

We feel that Rajat should not be allowed to celebrate this day alone. Since he has
been sharing his joy for physics with so many colleagues over so many years, we thought
that those of us who can should be allowed to share also this memorable day with him.
So, without asking him for permission, we have arranged a surprise party. We will hold
a symposium for him on May 6, 2000, at McMaster University. During this symposium
we will tell him when, how, and why he has given us new ideas and new impulses for our
research in physics. But also how he has inspired us in many other ways and shared his
friendship with us.

Not all of Rajat’s friends and collaborators who would have liked to come are able to
make the trip to Hamilton for that particular day. But those who can come look forward
to it very much. And everybody who wants to give a talk will do so. Not for long, because
at the end of the day we all want to be fit for a joyful dinner party, together with family
members.

We are grateful to Akira Suzuki, our far-East correspondent, and to Jimmy Law,
our local Ontario representative, for assisting in the organization of the symposium. In
particular, we thank Jimmy for organizing the dinner party and taking care of many
Hamilton connections. We thank Manju Bhaduri for being active behind the scenes while
keeping up the secret — a most difficult job for one who is so close. Thanks are also due
to Donald Sprung and the McMaster faculty for their support.

Most of the scheduled speakers of the symposium were able to send us a written
manuscript ahead of time. Their papers are collected in this Festschrift, which also
includes contributions from some colleagues who cannot participate at the meeting. The
bibliography at the end of the volume contains all references to work in which Rajat was
directly involved, but is by no means a complete list of his publications (which is at least
twice as long). We thank Franz Stadler for professional help in preparing the cover of this
booklet.

We want to present this Festschrift to Rajat Bhaduri on his birthday, as a testimony
of some of the physics that he has inspired, and as a tribute to our friendship.

Regensburg, March 2000 Chennai, April 2000

Matthias Brack M. V. N. Murthy
Stephanie Reimann
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1 RAJAT KUMAR BHADURI

Run, rabbit, run,

Dig that hole, forget the sun,

And when the work at last is done,
Don’t stop,

It’s time to start another one ...

Roger Waters

Rajat Kumar Bhaduri was born on May 6th, 1935, the youngest among nine brothers and
sisters, in the town of Raipur in the province of Madhya Pradesh which is in the central
part of India. He did his schooling and junior college in Raipur and in 1953, joined the
Physics honours program in Presidency College, Calcutta. Upon graduation in 1955,
he joined the M.Sc. program in “Radiophysics and Electronics” in Calcutta University.
This was a three year program in what would be called telecommunications today. His
records in Calcutta University were exemplary. Upon completion, he was selected by the
Atomic Energy of India and, as was the practice, had to participate in a one year training
program. It was in this training school that he switched directions and decided to choose
theoretical physics as his vocation. He joined the Tata Institute of Fundamental Research
and his first research project [4] was in the nuclear matter problem under the direction
of Kailash Kumar, in which he was using the Thomas-Fermi model. Kailash Kumar had
fond memories of working at McMaster University in Hamilton, Canada under Professor
M. A. Preston and suggested to Rajat that he move to McMaster.

Rajat came to McMaster for his Ph.D. in the spring of 1961. For his Ph.D. he tested
the suitability of a velocity dependent nucleon-nucleon potential for the nuclear two-body
and many body problem [6, 7, 8]. He graduated in the fall of 1963 under the direction
of Preston and went on a post-doctoral fellowship to work with Professor R. F. Peierls
at Oxford. He came back to McMaster in 1965. In 1967 he went back to Tata Institute
of Fundamental Research and after a brief sojurn in Bombay decided to come back to
Canada and joined the faculty at McMaster. This is where he has done most of his work.

Rajat’s early interest was in nuclear physics and, in the seventies, he co-authored a
book “Structure of the Nucleus” [1] with M. A. Preston (a revision of a book originally
written by Preston) on nuclear physics. His interests are widespread. In the eighties
he wrote a book on “Models of the Nucleon” [2], a subject which straddles nuclear and
particle physics. He has always been interested in semiclassical methods in all branches of
physics and, with Matthias Brack, co-authored the book “Semiclassical Physics” [3] in the
nineties. We do not know the subject of his book to be written in the next decade. This
celebration in his honour has been appropriately called “From nuclei to Bose condensates”,
as it conveys some idea of his breadth of interest.



2 Rajat Kumar Bhaduri

Apart from many students who did their doctorate under his supervision, Rajat col-
laborated, and still does, with many colleagues in Canada, Europe and Asia. He main-
tains a strong research contact in India (Madras, Bhubaneswar, Bangalore, Bombay and
Roorkee). His love of physics and sunny outlook towards life are infectious. He lives in
Dundas with his wife Manju, who teaches in Hamilton. All three of his children live in
the Hamilton area.

He is addicted to physics, bridge and tennis, in that order.

Subal Das Gupta



2 HOW I ESCAPED COLLABORATING WITH RAJAT

During 1958-59, Rajat Bhaduri was a trainee (II batch) in the Training School of the
Atomic Energy Establishment (AEE), Bombay. I had preceded him by one year and so
considered myself senior to him, although in reality he was senior to me, having come to
the Training School after finishing his Master’s degree. But I did not really know him
during this period, although I had valued one of his examination papers, along with those
of others in his class. So I was his tutor and deserve his respect which he seldom gives to
me.

In those days, the recruitment into the Tata Institute of Fundamental Research (TIFR)
at Bombay was mainly from among the successful trainees from the Atomic Energy Es-
tablishment. Rajat, P. P. Divakaran, Sudhanshu Jha, K. V. L. Sarma, C. V. K. Baba, N.
Mukunda and myself were a few from these early batches. At TIFR, in the beginning of
our career, Rajat and myself had something in common. Both of us started in Nuclear
Physics and both were consulting the Nuclear Theorist Dr. Kailash Kumar. Whereas I
meandered into Particle Physics, Rajat stuck to Nuclear Physics and made rapid progress,
not only in Physics but also in Life.

I suppose that Kailash Kumar introduced his bright student Rajat to his erstwhile
mentor at McMaster, University Professor Mel Preston. Rajat decided to quit TIFR
and go to Canada for his Ph.D. He became famous because of the following story that
circulated among the youngsters at TIFR. Because of the training received at AEE, we
had to give a bond stipulating that we serve the AEE or TIFR for a certain number of
years. When an official of TIFR confronted Rajat with the bond, the latter shot back
that he can speak to his lawyer. And, the lawyer was none other than his own brother!
This phase of the story ends here since I lost touch with him for a while after he left
TIFR.

Our world lines crossed again in 1963 at Oxford, with Rajat as a postdoc of Prof. R.
Peierls and me as a student of Prof. R. H. Dalitz (who had been a student of Peierls).
Rajat was newly married and came with his young wife Manju. Oxford was a rather
dreary place, especially because I was busy completing my Ph.D. thesis and could not
participate in any of the academic or cultural activities there. It was the presence of
Rajat and Manju that provided the human warmth that helped me to bear with Oxford
and concentrate on my work.

During the Oxford period, Rajat, Manju, Ashish Datta (a friend of the Bhaduries and
later of myself too) and I went on a tour of Europe. Ashish was at the wheel, I was the
map-reader and conductor, Rajat was the joker and entertainer and Manju provided the
dose of respectability required by this bunch of vagabond Indians. We started from Paris,
went to the southern coast, came to Switzerland, passed through Germany and then to
Italy. It was a memorable trip.

The scene now shifts back to Bombay and the period is the late 60’s. I have a job in
TIFR (I did not break the bond like Rajat!), but Rajat also is offered a job there. But
fate intervenes. Bombay is a difficult place to live unless you are rich. In those days it was
much worse since the TIFR campus (with the comfortable quarters that it boasts of now)
had not yet come up and many of us lived far away in north Bombay. Our quarters were
located in one of the worst areas infested with buffaloes and mosquitoes; in fact, it was
called “buffalo colony”. Rajat made one visit to me in our apartment and in his typical

3



4 How I escaped collaborating with Rajat

quick and woolly-headed fashion hired a similar apartment situated in an equally rotten
locality and told Manju to move there. She, being much more sensible and level-headed,
refused to do that. The net result was that they rejected Bombay and moved to Hamilton.
Thus I lost a valuable collaborator because of buffaloes and mosquitoes.

After that, our world lines diverged for quite a while, especially because I moved
southward to Madras. In the early 80’s, Rajat wrote to me saying that he wanted to
learn QCD from me and proposed to spend some time with me at Madras. Actually his
letter addressed to me at Madras reached me after a long delay since I was spending an
extended period in Japan. Thus by being away at the right time, I escaped again from
being his collaborator. Whether he really learnt QCD is another question.

I finally come to the modern times, the 90’s. We began to meet each other more
frequently, in Bombay or in Madras. Rajat tried to teach me his current passions — chaos,
anyons, semiclassical physics etc. etc., but all in vain. He even invited me to Hamilton,
hoping to convert me. Instead, I lectured there on neutrinos and tried to convert him!

During one of his recent visits to Madras, one day we found ourselves arguing with each
other vehemently on some question of quantum statistics. The argument was becoming
progressively hotter and we might have come to blows at any moment. We stopped short
of that, but neither he nor I convinced the other or agreed with the other. Of course,
a not-altogether-trivial factor that contributed to the argument was the percentage of
alcohol in our blood which was rising rapidly at that very moment!

Although I have not yet written a joint paper with him yet, both of us are still young
and we have high hopes!

G. Rajasekaran

The Institute of Mathematical Sciences
Chennai 600 113, India
graj@imsc.ernet.in



3 VELOCITY-DEPENDENT FORCES: FROM NUCLEAR PHYSICS
TO PRE-MAXWELLIAN ELECTRODYNAMICS

Velocity-dependent realistic nucleon-nucleon forces

In order to account for the strong repulsion seen in high-energy nucleon-nucleon (NN)
scattering, it had been assumed throughout the 50’s that the NN potential contains,
despite its overall attraction, an infinitely hard static core.! This made life very difficult
for all those theorists who were attempting to understand the properties of nuclei, and
particularly the limiting case of infinite nuclear matter, in terms of the NN interaction,
because it meant that ordinary perturbation theory would simply blow up. The answer
to this difficulty was the series of papers by Brueckner and others, but their theory was
very complicated, and even though the first results on nuclear matter were encouraging,
there were always questions of convergence and the need for corrections of still greater
complexity.

However, at the Kingston conference in 1960, Peierls? pointed out that while the
repulsive hard core was certainly consistent with the high-energy scattering data, it was
not the only possibility. In particular, he suggested that it might be possible to represent
the strong short-range repulsion that certainly exists by a velocity- (or momentum-)
dependent NN interaction,

Vir,p) = g(r) + 517 f() + () (1

Since such a NN force is non-singular ordinary perturbation theory is at least formally
applicable, and there was some hope at first that it might even converge rapidly enough
to offer a practical approach to the calculation of nuclear properties in terms of the NN
scattering data.

A short time later Rajat Bhaduri entered the picture, when he came to Mac to begin
graduate work under Mel Preston. For his thesis work he took up Peierls’ idea, one of the
first to do so, and showed firstly how the nuclear-matter results are far from unique when
a velocity dependence is admitted to the force, even under the constraint of fitting the
NN data. Nevertheless, by paying sufficient attention to the precise form of the velocity
dependence it was possible to get the same nuclear-matter results as given by a static
hard-core potential fitted to the same data [5, 6, 7, 8].

However, it was quite clear by this time that as long as the high-energy scattering
data were being fitted, even velocity-dependent forces were not soft enough to allow
perturbation theory to be used in any meaningful way, and that Brueckner theory, or
something equally complicated, could not be avoided. Thus there was no advantage to
retaining velocity-dependent forces, and those people who were still trying to understand
nuclear properties in terms of realistic NN forces drifted back to fitting the NN data with
simpler static potentials, sometimes with infinite hard cores, sometimes, as in the case

IR. Jastrow, Phys. Rev. 81, 165 (1951)

2R. E. Peierls, in: Proc. of Int. Conf. on Nuclear Structure, Kingston, ed. by D. A. Bromley and E.
W. Vogt (University of Toronto Press, 1960), p. 7



6 Velocity-dependent forces: from nuclear physics to pre-Maxwellian electrodynamics

of Don Sprung and Roland de Tourreil, with “super-soft” cores, but never so soft that
perturbation theory could be used successfully.?

Velocity-dependent effective forces

But while many workers continued to slog away on Brueckner theory, and its various
extensions and alternatives, others began to follow the more modest, but probably more
immediately rewarding, approach to nuclear-structure theory opened up in the middle
60’s with the demonstration by Michel Baranger and collaborators that nuclear Hartree-
Fock (HF) calculations were a feasible proposition.* This is a variational method in which
the trial wave-function has the independent-particle form, the rationale for which lies in
the undoubted validity of the shell model. But an equally well established feature of
nuclear physics is the strong short-range repulsion in the realistic NN force, and since the
short-range correlations to which it will give rise are not present in the trial function, the
force used in the HF calculation cannot be the real one but rather must be an effective
force in which the realistic short-range repulsion has been considerably softened. Thus,
in following this approach one gave up, at least temporarily, the hope of relating nuclear
structure to the “realistic” NN force, although implicitly the long-term intention must
have been to determine some universal effective force that could correlate as much nuclear
data as possible, after which one might hope to be able to relate this effective force to the
realistic force. (Later it was realized that even without being able to relate the effective
force to the real force, the HF method provided an excellent means of extrapolating
nuclear data to those experimentally inaccessible nuclei that play a vital role in stellar
nucleosynthesis.)

As to the choice of effective force, Rajat and Ed Tomusiak made the point, at a very
early stage, that it must lead to the correct saturation properties of nuclear matter if
finite nuclei were to be fitted [9]. However, this leaves considerable freedom, and while
the Baranger group used an effective force that had the velocity-dependent form of Eq. (1),
the Gogny group has enjoyed considerable success with purely static potentials.> However,
velocity-dependent effective forces really came into their own with the application of the
Skyrme force® to HF calculations by Vautherin and Brink.”

Direct inelastic scattering

At some point towards the end of the 1960’s it occurred to me that it would be rather
nice to see to what extent one could use the same effective interaction in HF and in
calculations of the direct inelastic scattering of nucleons. There was, of course, no reason
why the two forces should be identical, but they are not completely unrelated either, and
the simplest starting assumption to make is that they are in fact identical. Since I was
already involved in HF calculations using velocity-dependent forces, this meant that we
had to do direct-reaction theory with such forces, and the first thing I learned was that
no one had ever worked out the formalism for this case. So I set a graduate student,
Elie Boridy, on the problem, and in the fullness of time he reported that the velocity

3J. Coté, B. Rouben, R. de Tourreil, and D. W. L. Sprung, Nucl. Phys. A 273, 269 (1976)
4K. T. R. Davies, S. J. Krieger, and M. Baranger, Nucl. Phys. 84, 545 (1966)

5J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980)

6T. H. R. Skyrme, Phil. Mag. 1, 1043 (1956); Nucl. Phys. 9, 615 (1959)

“D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972)



Velocity-dependent forces: from nuclear physics to pre-Maxwellian electrodynamics 7

dependence gives rise to far bigger effects than we expected, namely, there is a relaxation
of some standard selection rules.®

To see what happens it is easier if we consider just the scattering of spinless particles
such as alphas. (The effective interaction between the a-particle and a target nucleon
can be regarded as resulting from a folding of the effective NN force over the a-particle,
and it will presumably be velocity-dependent if the effective NN force is.) Now according
to the “normal-parity” rule, if the target nucleus is initially in a 0" state a-particles can
excite only states of normal parity, 7 = (=)’ ', where J' is the total angular momentum
of the excited target nucleus. In a single-stage process with a purely static and central
effective force this rule holds rigorously if exchange is neglected, essentially because in the
multipole expansion of such a force the only operators that can appear are of the form Y;.

However, things are much more complicated in the presence of a velocity-dependent
force of the form of Eq. (1). Because of the famous identity

v=il - LrxL), (2)

where L = r X p, the multipole expansion of the force will now contain operators of the
form [[Y1L]1Yl]l, which will clearly excite states of parity (—)"*!. Thus the normal-parity
rule for the inelastic scattering of a-particles will be violated for a momentum- dependent
force.

Experimentally, the normal-parity rule is indeed found to be violated, but this does
not prove that the effective interaction must be velocity-dependent, since there are other
possible explanations: two-stage processes (including compound-nucleus formation), spin-
orbit forces, and exchange effects. Rather than evaluate the relative importance of these
different mechanisms, I want to devote the rest of this paper to trying to get some insight
into how the selection rules can be changed just by making the force velocity-dependent.
From the point of view of the formalism, of course, there is no problem: the new tensors
do the trick, but the force is still central, and one would like some physical understanding
of what is going on.

We begin by noting that if we denote by 1, and 1/, respectively, the initial and final
angular momentum vectors of the a-particle, then we must have

=L +J, (3)

since the initial state of the target nucleus has zero angular momentum. Then if there is
no change in the direction of the alpha’s angular momentum, it follows that J' = |l, £, |.
Since the parity change of the target is given by ém = (=)l*% we see at once that a
violation of the normal parity rule requires that the alpha’s angular momentum change
direction during the scattering, i.e., the alpha’s trajectory must undergo “orbit tilt” (for
nucleons, spin flip plays the same rule). (In this respect it is significant that of the several
new tensors that the momentum dependence gives rise to, the only ones that break the
normal-parity rule are those that contain L: it is the operators L*' that do the tilting.)

Of course, when the plane of the alpha’s trajectory tilts, the plane of the shell-model
orbit of a nucleon in the target nucleus must tilt in the opposite direction in such a way
that angular momentum is conserved. It is easy to see how a velocity-dependent force will

8E. Boridy and J. M. Pearson, Phys. Rev. Lett. 27, 203 (1971); Nucl. Phys. A 193, 113 (1972)



8 Velocity-dependent forces: from nuclear physics to pre-Maxwellian electrodynamics

do this. If we naively think of a nucleon orbiting around in the nucleus like an electron
in a coil, its velocity relative to the bombarding alpha will vary, depending on where it is
in the coil. Thus the force on one side of the coil will be different from the force on the
other side, and a torque will result.

The Weber force

Getting this simple physical picture of what was coming out of all the tensor algebra was
quite satisfying, but we became really excited when the image of orbit tilting reminded
us of what actually happens when a wire through which flows an electric current passes
by a small coil carrying a current: according to Ampere’s law the two tend to swing
together into the same plane. So it began to look as though one might be able to re-write
electrodynamics in terms of velocity-dependent forces of the form of Eq. (1). Of course,
so far all this is just qualitative, so let us see what happens quantitatively.

We must first recall that the expression given by Eq. (1) does not represent a “force”
at all, but rather is to be inserted into a Hamiltonian, thus

Hzi—i-V(r,p). (4)

2m

Treating this as a purely classical object, and using Goldstein, especially the section on
velocity-dependent forces in Ch. 1, we find for the corresponding force®

F={—g()+h()i + %h’(r)i“?} ;. (5)
where
h(r) = QmQL (6)
1+ 2mf(r)

If this is to have any relation to electrodynamics, then clearly for the static term, g(r),
we should take the Coulomb potential, ¢;¢o /7. If we then choose f(r) in such a way that
h(r) = g(r)/c?, it turns out that we actually get the correct Ampere law for the force
between two wires each carrying an electric current,

I, 1 dry - dr
F:_%%%f‘ 17°2 X (7)
Alas, we soon found that we had been scooped — by 125 years. An expression of the
form (5), with the above choice for f(r) and g¢(r), had already been proposed in 1848
by Weber!® for the force between two moving charges. And of course, although Weber’s
theory had a number of successes it also had some fatal flaws, the most conspicuous of
which in retrospect is the inability to provide for a wave motion.
So Maxwell’s equations are necessary after all. Nevertheless, it is remarkable that the
old Weber theory, while incorrect as a theory of electrodynamics, should have resurfaced
in nuclear physics,'' the velocity-dependent forces represented in Eq. (1) being nothing

9J. M. Pearson and A. Kilambi, Am. J. Phys. 42, 971 (1974)

10W. Weber, Ann. Phys. (Leipzig) 73, 193 (1848); see also E. Whittaker: A History of Theories of
Aether and Electricity, Ch. VII

1Tt is interesting to note that a modified Weber force can also account ezactly for the precession of
the perihelion of Mercury: see E. Whittaker, loc. cit.
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but a generalization of the old Weber force. Rajat was one of the earliest practitioners
of these forces in nuclear physics, right at the beginning of his career, but they are still
widely used, especially in the form of the Skyrme force. It is nice to know that they have
such a venerable pedigree.

I am indebted to two colleagues, Pierre Depommier and Jean LeTourneux, for some
crucial remarks.

J. M. Pearson
Département de Physique
Université de Montréal
Montréal, Québec
Canada H3C 3J7
pearson@lps.umontreal.ca
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4 DEFORMATION EFFECTS IN URANIUM ON URANIUM COLLISIONS

It has been conjectured that deformation effects will be very signif-
icant tn U on U collisions at relativistic energies. The effects are
calculated by modeling of collisions of two deformed intrinsic states.
We point out this overestimates the effects of deformation. With-
out polarized beams there is practically no effect. Beams polarized
in the 2+ states will show some effect but much reduced from the
predicted results.

Introduction

There have been speculations if deformation would strongly influence observables in heavy
ion collisions at high energy. For example, what difference one would expect to see in
event by event analysis of Uranium on Uranium (U on U) collisions as opposed to Pb on
Pb. The difference between the two is that the ground state band of U can be generated
from a deformed intrinsic state whereas Pb ground state as well as excited states are
basically spherical. Model calculations considered collisions of two deformed objects:
tip-tip collisions (long axes head on) and body-body (short axes head on and long axes
parallel) collisions. Significant differences are found, for example, in the elliptic flow, in
the central density achieved, in K+ production etc.

Our contention is that to analyze the influence of deformation on observables one has
to pay particular attention to how the colliding beams are prepared.

This work was done in collaboration with Charles Gale, who is also speaking in this
symposium but on a different topic.

The Uranium ground state

Suppose the colliding beam has only the ground state of even-even Uranium. What is
the nature of the ground state? One can do a shell model calculation to obtain this
but it is well-known that a good approximation to the ground state can be obtained by
doing a deformed Hartree-Fock-Bogolyubov calculation from which the ground state can
be projected. Thus

A

ya(2) o [ d2D]o(Q) R(Q)Po(x) (1)

We use the convention of Rose for D functions. Here the subscript 0 in ® means that
the Hartree-Fock-Bogolyubov solution has axial symmetry (k=0); Q2 stands for the three
Eulerian angles «, 8 and v. Eq. (1) is easily established by noticing that the Hartree-
Fock-Bogolyubov solutions can be written as

q’o(l') = Z aloq’lo(ﬂﬁ) (2)
The physical solutions are Wry’s; az’s satisfy 3 a?, = 1. If the beam has only the ground

state of U then we should use J = M = 0. This is completely spherically symmetric.
Thus we have two spherically symmetric densities hitting each other.

11



12 Deformation effects in Uranium on Uranium collisions

The density in the ground state

The shell model ¥yo(x) of Eq. (1) is very complicated and to obtain the ground state
density from it will be very hard. We should exploit the fact that these nuclei are very
well described by the Bohr-Mottelson model according to which we write

2J+1

1/2 5
v ) Dho()8o(0a) (3)

wE (@) = (
Here ®, is the BM intrinsic state. The number of coordinates in z’ is 3N — 3 where N is
the number of particles. The symbol Qz' means that the intrinsic state is at orientation
Q = a, 3,7 with respect to space fixed system; (251)'/2D{,((€)* is the amplitude that
the intrinsic state is at this 2.
Exploiting the fact that the intrinsic state has k£ = 0, the density in the JM state is

pym () = /Sin/@dﬁd’Y\YJM(ﬁa7)‘2:5(5,% ') (4)

Here we have indicated that the intrinsic state density p(z') is tilted (its symmetry axis
is tilted) at angle 3,y with respect to axes in the lab. It is this p that is used by Shuryak
and Li. In keeping with their parametrization we take p to be a spheroid with semi-axes
R; and R;. For simplicity, constant density is assumed in the intrinsic state. If the nucleus
were spherical, incompressibility of nuclear matter dictates the radius of the equivalent
spherical nucleus would have been (R2R;)'/3. If the beam has only the ground state we
should use Yy in the above equation. The resulting density pgo(r) is entirely spherical.
Any deformation that may be apparent in a given event will be due to fluctuations of
positions within this spherical nucleus. This effect will be small. It is worthwhile noting
that even though p is constant, in the spin zero ground state pgo(r) is constant only up
to distance r = R, and beyond will decrease gradually to zero at r = R;.

Polarized beams

Granting that deformation effects are lost in a beam which has the ground state only we
consider polarized beams. Let us call the beam direction to be the z-direction. Then if
both the target and the beam are in Wy states we will have approximately tip-tip colli-
sions. Even then quantum mechanics significantly smears out the effect. For quantitative
estimates let us consider {|z|) and (|z|) where (|z|) is the value in the beam direction and
(|z|) is the value perpendicular to the beam direction. For tip-tip collisions of deformed
intrinsic states these are 3.15 and 2.44. Of significance is their ratio which is 1.29. With
colliding nuclei each in oy in the beam direction these changed to 2.83 and 2.61, respec-
tively. The ratio comes down from 1.29 to 1.08. In Y5, states (body-body collisions), this
ratio is 0.93 compared to 1/1.29 = 0.76 if collisions between intrinsic states are considered.
The numbers for polarized beams were found by numerical computation.

Subal Das Gupta

Physics Department

McGill University

Montreal, Quebec

Canada
dasgupta@hep.physics.mcgill.ca



5 ROTATING NUCLEI AND OTHER TOYS

I have noticed that I am the only experimentalist giving a talk at this celebration of
Rajat’s sixty-fifth birthday. I find this to be somewhat unnerving. Many experimental
groups have what we call a “tame theorist”. This is a person who is capable of explaining
theoretical concepts to experimentalists. Rajat has been one of our “tame theorists”.
How absurd that sounds to refer to Rajat as tame!

This talk is really about images and connections. When one thinks of a scientist, one
often has a mental picture. This picture is often not really close to reality. However some
of these images have become very famous; recognized by scientists and the public at large.
For example, there is the famous one of Einstein riding a bicycle seen in Figure 1. Now all
of us have an image of Rajat in our mind. These images are probably all different. Some
of us picture him at a blackboard and others may see him pecking away at a computer
terminal. I'll come back to my picture of Rajat at the end of my talk.

Figure 1: Einstein riding a bicycle. We often have a
mental picture of a scientist

I have been associated with Rajat for a long time. I would like to give you my personal
view of the great time that we have had together. One of the peculiar things about our
association is that most of our interactions have dealt with spinning objects. Figure 2

13



14 Rotating nuclei and other toys

is adapted from a figure made by Witek Nazarewicz (another tame theorist) and shows
what he refers to as “Rotations in the Universe”. This figure illustrates an interesting
relationship between the time taken for an object to rotate around once, i.e., its period
and the size of the object. The amazing thing about this figure is that it shows objects
whose size differ by 60 orders of magnitude! It includes things like the earth and galaxies
and more hypothetical objects such as superstrings and they all fit nicely on one linear
relationship. It really does show how rotations are universal. Rajat has made a number
of important contributions that are related to this figure and I have had the good fortune
to take part in some of these.

Rotations in the Universe
éoloxy cIusD're(r; Eloxy
10 [ Earth orbit
Pulsar PSR 1913+16 mELEarth
Or O Crab pulsar 7
. O Uttracentrifuge
3 -10F .
é O Molecules
87 -20F B Atomic nucleus B
= O Meson
-30F i
40k i
O Superstring
30 20 10 0 10 20
Log(size/cm)

Figure 2: Rotations in the Universe. This figure which was adapted from
one made by Witek Nazarewicz shows that rotations are ubiquitous.

One would think that my most obvious connection to Rajat’s work should involve the
physics of the nucleus. He wrote one of the standard graduate texts with Mel Preston.
Indeed, a number of years ago Rajat and I worked for some time on an interesting problem
in nuclear physics. It is not understood why rotational bands in neighbouring nuclei often
have identical spectra. This is the so-called “identical band” problem. We tried a number
of things to explain this. I thought about vortices in rotating nuclear fluids and the
similarity of the rotating nucleus to the models for rotating stars that were developed
by Subrahmanyan Chandrasekhar.! We spent some time on this and I talked about it
in a meeting in Strasbourg [45]. However, the idea of how vortices are involved in the
motion of rotating nuclei was developed much more completely by another speaker in this
meeting: Philippe Quentin and his colleagues.

When 1 first taught mechanics, Rajat helped me with the solutions to a number of
problems in planetary motion; objects rotating around the sun. He was always willing to
help but occasionally ran off to work on another problem in rotational motion. Playing
tennis and putting spin on a tennis ball is one of his passions. I said that he ran off to

1S. Chandrasekhar, Ellipsoidal Figures of Equilibriwm (Yale University Press, 1969)
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play tennis. Possibly “ran” is the wrong word, because he was more often racing away on
his bicycle.

Many times during the past 30 years I went to his office to discuss something that I
didn’t understand, or to suggest a new idea to him. He always found time to give me
an impromptu lecture on his board about it. If I still didn’t understand when he was
finished then he would often go to his filing cabinet. Then he would bring out a yellowed
document, “a little unpublished work”. This would turn out to be something he had
done years before and showed that he had already worked on what I thought was my new
bright idea.

We once published a peculiar paper on the rotational spectrum of the nucleon [31].
This was an interesting idea of his that the spectrum of excitations of the nucleon could
be classified in the same manner as excitations of the nucleus. Thus the spectrum of the
baryons are generated by considering them as a rotating bag of quarks.

Our next step, or should I say spin, with rotating objects was to study the periodic
orbits associated with the rotating harmonic oscillator [54]. We’ll hear more about this
in Kaori Tanaka’s presentation, but suffice it to say it has applications in nuclei and in
quantum dots.

You can see that I've had a great time with Rajat, so far. So I’ve made up a new
version of the “Rotations in the Universe” slide. It is the rotations in Rajat’s universe,
Figure 3. You can see that Rajat has “taken quite a spin” from the very small to the very
large; quarks only 107! m across in baryons with a radius of 107 m, nuclei, quantum
dots, tennis balls, bicycles, spinning planets and stars and planetary orbits up to a size of
10'2 m. This represents a range of 30 orders of magnitude! But Rajat, we don’t need to
stop here. We’ll have to hurry though. We have still 30 more orders of magnitude to go!

Rajat’s Rotations
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Figure 3: Rotations in Rajat’s Universe. In this figure the filled squares
illustrate some of the rotations that Rajat has studied. The open squares
represent some of the problems in the 30 orders of magnitude that Rajat
hasn’t tackled yet.



16 Rotating nuclei and other toys

Now let’s go back to the idea of images. Remember that I said that we think of a
scientist in terms of a mental picture. I want to secure Rajat’s financial health in his
retirement. I propose that he sell pictures of famous physicists. The business may have
to start small, but after some initial success I am sure that it will grow. And I propose
the image shown in Figure 4 for his first sale.

Figure 4: In order to finance Rajat’s retirement, the
author suggests that Rajat begin selling pictures of
famous scientists. This could be his first best seller.

Thank you, Rajat. Happy Birthday.

Jim Waddington

Department of Physics & Astronomy
McMaster University

Hamilton, Ontario

Canada L8S 4M1

jew@mcemaster.ca



6 ANGULAR MOMENTUM CONTENT OF DEFORMED
INTRINSIC STATES

In quantum mechanics there is more to angular momentum than the mere rotation of a
classical distribution of matter, should it be rigid or not. One well-known example of this
fact is related with the concept of an intrinsic state, central to the liquid-drop description
of nuclear vibrations and rotations in the Bohr-Mottelson approach.! In practical many-
body calculations relying, for most of them, on an independent fermion approximation,
one produces such intrinsic deformed states which violate the rotational symmetry, as is
well known. Peierls and Yoccoz? have shown many years ago how to restore this symmetry
within an appropriate configuration mixing of the generator-coordinate method type.

In a paper of Rajat Bhaduri [22] whose pedagogical clarity, technical elegance and
physical insight is typical of the style of his and his collaborators’” works, he studied
together with S. Das Gupta the angular momentum content of such intrinsic states cal-
culated within the Hartree-Fock or Hartree-Fock-Bogolyubov approximation as obtained
a la Peierls-Yoccoz. As a matter of fact, this paper took the standpoint of viewing the
intrinsic state as a kind of thermal average of states belonging to a rotational band. In
doing so, they assumed a perfect rotor energy character for the states projected out of the
intrinsic wavefunction. Through a well-justified use of the high-temperature limit for the
corresponding partition function, they came out with a very useful approximate expression
for the components of the considered intrinsic state on good angular momentum states.
The “temperature” parameter standing in this approach appears to be proportional to
the intrinsic-state expectation value of the squared many-body angular momentum.

In the following, I would like to make two remarks related with the above summarized
paper. They stem out of a study which has been initiated in a collaboration with Igor N.
Mikhailov (BLTP Dubna).?

The first one relies on the trivial fact that one cannot formally distinguish between
a Boltzmann factor for a rotational energy and a distribution factor behaving as an
exponential in terms of J(J+1). It appeared to us that the physics of an intrinsic state is
rather well formulated in terms of a rotor, forced by a shape-constraining field, or in other
terms as a kind of quantum pendulum. Upon treating it in a way similar to what has been
done by Lo Iudice and Palumbo? to describe the scissor modes, one finds, indeed, in the
high intrinsic J? limit, that the ground-state wavefunction has exactly the same expansion
coefficients in angular momentum as obtained in Ref. [22]. This clarifies, we think, the
somewhat obscure nature of the temperature parameter introduced in this paper.

For a practitioner of Hartree-Fock calculations, the actual necessity of dealing with
microscopic solutions of deformed nuclear states which are merely intrinsic states and not
true observed states, comes somewhat as a frustration. And then one wonders whether
one could think of a nuclear system that could be really polarized, so that at least in

initiated in Aa. Bohr, Dan. Mat. Fys. Medd. Vid. Selsk., 26, No. 14 (1952)
2R. E. Peierls and J. Yoccoz, Phys. Soc. A 70, 381 (1957)

31. N. Mikhailov and P. Quentin, Phys. Lett. 462 B, 7 (1999); I. N. Mikhailov and P. Quentin, Proc.
Int. Conference on Fission and Neutron Rich Nuclei, Saint Andrews (Scotland, U.K.), June 1999 (World
Scientific, in press); I. N. Mikhailov, Ch. Briancon and P. Quentin, Proc. Int. Symposium Soloviev,
RIKEN (Japan), 1999 (World Scientific, in press)

N. Lo Iudice and F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978)
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18 Angular momentum content of deformed intrinsic states

one single case one could come closer with a Slater determinant, or quasiparticle vacuum
as well, to the description of a real physical situation for a change. Nuclei embedded in
strong quadrupole lattice fields could provide such opportunities. However, as well known,
the decipherament of the resulting signals is not very easy and mixes our difficulties of
describing accurately both the nuclear structure and the lattice physics. A transient
nuclear system could provide, we think, such an opportunity — and this is the topic of my
second remark.

Just after the scission time (loosely defined as the time after which the strong inter-
action does not play any more a significant role in the fissioning system evolution) each
fragment is indeed polarized by the other. Then we considered that due to the Heisenberg
principle, the orientation information so provided should reflect itself in a distribution of
the canonically conjugated quantities, namely the angular momenta in each fragment,
that should be hidden somewhat in the intrinsic-state distribution of the deformed frag-
ment as studied by Bhaduri and Das Gupta [22]. Of course, while doing so one should
carefully consider the total angular momentum conservation for the whole system (e.g.,
for the spontaneous fission of an even-even nucleus one should conserve a vanishing total
spin). Such a distribution thus yields a finite average value for the angular momenta of
the fragments which have been measured since a very long time in some kind of averaged
way and is now the subject of intense experimental efforts upon using the very high selec-
tivity gamma-ray multidetector arrays (like EUROBALL or GAMMASPHERE), coupled
or not with charged-particle (the fragments) multidetectors (like SAPHIR) or fragment-
mass analyzers.> A natural question is, of course, to know whether or not this uncertainty
principle mechanism (which we have dubbed as an orientation pumping mechanism) is
able to account for most of the observed fragment spin for spontaneous or low-energy
fission. This is all the more interesting that so far the standard explanation for the ob-
served average values was referring to a completely different mechanism, namely a thermal
excitation of collective modes before scission, like the one known as the bending mode.®

This is where the simple formula for the expansion coefficients found in the paper of
Bhaduri and Das Gupta [22] comes into play. As a first estimate of the fragment angular
momentum content, we described the total wavefunction after scission as a product of
two separated intrinsic state wavefunctions (say e.g. two deformed BCS wavefunctions)
projected onto a vanishing total angular momentum state. In order to minimize as much
as possible other sources of fragment angular momentum generation (so that we can come
to stronger conclusions on the ability of the pumping mechanism to yield about the right
spin content of each fragment) we considered here a zero relative angular momentum
between the fragments. Then one obtains when using the expansion coefficients of Ref.
[22], the following very simple expression for the squared angular momentum expectation
value J? corresponding to the fragment 7 in terms of the intrinsic expectation values of
the same operator for both fragments ;2

1 1 1 1
T pE-2ta (1)

1 2 J1 J2

Of course the equality of the moments reflect the conservation of the vanishing total

5for old and recent experimental results see, e.g., the references given in the papers of I. N. Mikhailov
and P. Quentin quoted above in Ref.3

bsee, e.g., M. Zielinska-Pfabe and K. Dietrich, Phys. Lett. 49 B, 123 (1974)
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angular momentum. When computed for realistic fission fragments one gets typically ;2
~ 100A? yielding thus average spin for each fragments in the J; ~ 7h range as observed.
This conclusion should only assign to the bending mode contribution a corrective role.
As a matter of fact it has appeared increasingly clear that the latter model explanation
was somewhat inadequate in many respect. In particular, it necessitates the introduction
of so-called temperature of the order of 3 MeV which are inconsistently high with respect
to experimental excitation energies. Furthermore it was unable to explain the observed
structure of the average angular momentum as a function of the total excitation energy
deposited in the fragments, contrarily to the present mechanism which provides a clean
cut explanation of the low value of the momenta for cold fission (no neutron emitted) and
its sharp rise when the number of emitted neutrons increases.

Clearly, more refined versions of the model are needed. They are currently studied in
particular in so far as the projection on good angular momentum states are concerned.

The primary intent of this short note was to convey the deep gratitude that I am
strongly feeling, as many physicists do, who have been lucky enough to come somewhat
close even for a limited time to Rajat Bhaduri.

Thank you very much, Rajat, for the generous share of illuminating remarks and
inspiring comments.

Happy birthday!

Philippe Quentin

Centre d’Etudes Nucléaires de Bordeaux-Gradignan
(Université Bordeaux I and IN2P3/CNRS)

BP 120

F-33175 Gradignan-Cedex, France
quentin@cenbg.in2p3.fr
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7 THE PAULI PRINCIPLE IN VIRTUAL STATES
OF PERTURBATION THEORY

In reformulating quantum electrodynamics (QED) in his own style, Feynman advocated
in 1949: “It is obviously simpler to disregard the exclusion principle (of Pauli) completely
in the intermediate states.”! This was based on the observation that effects of all virtual
processes that violate the Pauli principle formally cancel out. Feynman’s prescription to
disregard the Pauli principle in all virtual states underlies the Feynman diagram technique
that accomplished enormous transparency of QED. Feynman’s prescription is also widely
applied to many-body problems in quantum mechanics with interesting implications.?

One of the problems which Rajat Bhaduri, Benoit Loiseau, Carl Ross and I worked on
some thirty years ago is concerned with the three-nucleon (3N) force. The simplest and
probably the most important mechanism of the 3N force [19] is the two-pion-exchange
process among three nucleons.® This can be viewed as the Pauli-blocking effect on the two-
pion-exchange process between two nucleons (NN). When the NN are imbedded in nuclear
matter, part of the two-pion-exchange effect is suppressed due to the Pauli principle. This
would mean that the NN interaction in nuclear matter is different from the one in vacuum.
It would not be related to the NN scattering data in any simple manner. According to
Feynman, however, one can ignore the Pauli principle in intermediate states. One can
ignore the Pauli blocking in the NN force in nuclear matter and use the “free” NN force.
On the other hand, however, one has to include a 3N force which takes care of the Pauli
blocking effect on the NN interaction in nuclear matter. We also worked on the ANN
force [11, 12, 14]. This was motivated by the “over-binding” of yHe® [10]. By the way
Ref. [10] was the first paper that I wrote with Rajat. We were carried away to the extent
that we examined a NN interaction [13] and effects of atomic three-body interactions in
liquid *He [20].

Let me turn to another problem in which Rajat and I were both interested. Although
we did not write any paper together, we had many discussions on it. This is concerned
with the fractional fermion number (see Ref. [2], Chapter 8). I suspect that this problem
has something to do with Feynman’s prescription I mentioned above. Consider a system
described by the one dimensional Dirac equation, with a given potential of the form of
BS(z) + V(x), where 3 is one of the usual Dirac matrices. This is 2 x 2 in one space
dimension. S(z) is a Lorentz scalar and V (z) is the zeroth component of a Lorentz vector.
Let us consider the vacuum in the hole theory. The vacuum is such that all negative energy
states are filled. It contains an infinite number of fermions. Its fermion number is infinite
but its depends on the potential assumed. It turns out that the potential-dependent part
of the fermion number of the vacuum is N = (1/7) [ V(z)dz, which is independent of
S(x). This N can take any fractional value depending on V(z).?

!R. P. Feynman, Phys. Rev. 76, 749 (1949)

2H. Miyazawa, Prog. Theor. Phys. (Japan) 6, 801 (1951); S. D. Drell and J. D. Walecka, Phys. Rev.
120, 1069 (1960); D. Kiang and Y. Nogami, Nuovo Cimento A 51, 858 (1967)

3B. Loiseau and Y. Nogami, Nucl. Phys. B 2, 470 (1967); B. Loiseau, Y. Nogami and C. K. Ross,
Nucl. Phys. A 165, 601 (1971); ibid. A 176, 665 (1971)

“see, e.g., M. Stone, Phys. Rev. D 31, 6112 (1985); Z.-Q. Ma, H. T. Nieh and R.-K. Su, Phys. Rev.
D 32, 3268 (1985); Y. Nogami and D. J. Beachey, Europhys. Lett. 2, 661 (1986)
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22 The Pauli principle in virtual states of perturbation theory

The fractional fermion number that arises as I described above leads to the following
conundrum.® Consider the relativistic nuclear shell model which has become very popular
in recent years. For simplicity let us consider its one-dimensional version. The shell model
potential is of the form of fS(x)+ V(z). The nucleon number and also the nuclear charge
of a model nucleus is fractional in general for the reason I described in the preceding
paragraph. This is of course a disaster. A similar situation is found in the Skyrmion-bag
model of hadrons [2]. The quark number that is contained in the bag is fractional. This
is due to a specific boundary condition imposed on the bag surface. The fractional part
of the quark number of the bag, however, can be compensated by the fractional quark
number that is carried by the Skyrmion field surrounding the bag. In the case of the
nuclear shell model, however, we don’t have such a Skyrmion field, at least in the usual
way as we conceive it. There is nothing that can eliminate the fractional part of the
nucleon number. Something is wrong.

When I learned QED as a student I had a question, which still haunts me. In QED we
face infinities which we can renormalize away. Apart from the mass renormalization, we
have three renormalization constants, usually denoted with Z;, Z; and Z3. The charge
is renormalized as e = (Z,Z3/Z1)/?ey where ¢y is the bare charge. The Ward-Takahashi
identity, which is related to the gauge invariance of QED, leads to Z; = Z, and hence
e = Z3'%e5. The Z5 is a divergent integral, which depends on the cut-off. It can be any
fractional number. I believe that this was historically the first example of the fractional
fermion number.

What is the mechanism of the charge renormalization? Consider a test charge eg
placed in a vacuum. This charge causes a change in the charge distribution around it,
resulting in a change in the total charge (the test charge plus the charge due to the
vacuum polarization). This is strange. Unless part of the polarized charge escapes to
infinity, the vacuum polarization would not change the total charge. In the language of
the Feynman diagrams the vacuum polarization is described in terms of a loop diagram in
which a photon creates a virtual pair of particle and anti-particle (positron) in vacuum.
How does this process cause a change in the total charge? The electron-positron pair is
neutral after all. I would like to see a version of QED in which the charge renormalization
is unnecessary, i.e., Z3 = 1.

The validity of Feynman’s prescription seems to have been taken for granted so far.
In a recent paper my Brazilian collaborators, Chico Coutinho and Lauro Tomio, and
myself tested Feynman’s prescription on a one-dimensional bag model, the same model
as I discussed above with S(x) taken as an infinite square well potential.® For V(z) we
assumed V' (z) = Az. We examined the polarizability of the vacuum, which is essentially
the second order energy shift of the vacuum caused by V(z) = Az. We compared two
formally equivalent methods of calculation, I and II. Method I takes account of the Pauli
principle in intermediate states whenever it is applicable. In method II the Pauli principle
is completely ignored, i.e., Feynman’s prescription is applied.

We showed that, if the energy shifts of all occupied levels of the vacuum (all the
negative energy levels) are summed up in method II, the terms violating the Pauli principle
formally cancel out. Thus the two methods appear equivalent. This illustrates how

5Y. Nogami, in: Strong Interaction and Hadron Structure, ed. by S. Sawada (Nagoya Univ., Nagoya,
Japan, 1990), p. 234

6F. A. B. Coutinho, Y. Nogami and L. Tomio, Phys. Rev. A 59, 2624 (1999)
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Feynman’s prescription (formally) works. We examined this equivalence by calculating
the energy shift explicitly. It turned out that the two methods lead to different energy
shifts; the equivalence of the two methods does not hold in this example. This means
that Feynman’s prescription does not always work. I think such a strange situation arises
only when the negative energy sea is included. My speculation is, this has something to
do with the fractional charge that I discussed above. The fractional fermion number also
involves the infinite negative energy sea.

I have talked about a few different topics which I suspect are somehow related at a
deep level. I have no conclusion. This talk is only a very preliminary, premature report
on one of my hobbies.

I would like to take this opportunity to express my deep appreciation of the constant
stimulation that I have received from Rajat in the last thirty-five years. I wish Rajat a
very happy retirement that will begin in a few months. Einstein” said:

Science is a wonderful thing if one does not have to earn a living at it . ..
Only when we do not have to be accountable to anyone
can we find joy in scientific endeavor.

I am sure Rajat will continue to be a source of enlightenment and excitement for all of
us for many years to come.

Yuki Nogami

Department of Physics & Astronomy
McMaster University

Hamilton, Ontario

Canada L8S 4M1
nogami@mcmail.cis.mcmaster.ca

"Letter to a student (1951), quoted by H. Dukas and B. Hoffmann in: Albert Einstein, The Human
Side (Princeton Univ. Press, 1979), p. 57
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8 HOW WE WROTE A PAPER FROM CHICAGO TO DUNDAS

Before I get to the subject matter of the title, let me first touch on a couple of time lines.

The first was, Rajatda and I did not meet at Oxford. I was a green graduate student
at Battersea College in London, and I was told by my supervisor that he (Prof. Elton) was
spending a year at University of Washington. When he was away, I was to travel up to
Oxford and talk to people there, especially Prof. Castillejo. So dutifully, whenever I was
stuck I travelled up to Oxford for clarification. It was only after I arrived at McMaster
did I learn that Rajatda was in Oxford at that time.

After I arrived at McMaster, I did not start working with Rajatda till after his sojourn
back in India at the Tata Institute. Our collaboration began in earnest during M. R.
Gunye’s visit at McMaster, when we collaborated on working out the p-shell nuclei spectra
[15]. This then led us to consider the yHe® hypernuclei, especially the tensor force effect
[16]. Since we had the tools in place, Rajatda saw immediately that we should be able to
do all the s-shell nuclei [17] with the effective forces from realistic potentials, using either
the Kuo-Brown technique or the reference spectrum technique. This we did and, in the
process, discovered the error in the second-order correction of the landmark Kuo-Brown

paper.

It was then May 1969, and there was an international conference on hypernuclear
physics at Argonne, so Gunye, Rajatda, Yuki and I went. We caught the overnight train
from Dundas for Chicago. At the conference, the major problem seemed to have been the
discrepancy between the lifetimes between the free A particle and when it was decaying
from the hypernuclei (H?). This discrepancy was cleared up by later experiments. Also
discussed was the binding energy of the A particle in nuclear matter, and both Rajatda
and I picked up on the comment by Arthur Kerman, who suggested that the phase-shift
approximation should be good for the A-N case. This was very appropriate, as I had just
finished playing around with the phase shift inversion problem using a technique of Frank
Tabakin.

So on the train coming back we began outlining the paper. By the time the train
reached Dundas, we had essentially the final formulae done.

Calculations begun in earnest immediately, as I had a date to keep in England. We
had help from Don Sprung and P. Banerjee who had done more detailed nuclear matter
calculations, and they kindly let us use their technique to calculate our second order
corrections. The calculations must have been finished in quick time, since I was in England
getting married on June 7. Rajatda must have completed the writeup and typing of the
paper and sent it off while I was away. It was received by Nuclear Physics on June 23
[18]. T think this was the fastest paper we have ever done, and it was accepted with no
corrections.

After I moved to Guelph that Summer of 1969, our collaboration unfortunately lapsed,
while I moved on to explore atomic physics problems. This was not far from nuclear
physics, as the problems dealt with looking at atomic processes during nuclear beta decay,
and also exotic atoms like kaonic and ¥ atoms, where these were being used to probe the
Kaon-nucleon and ¥-nucleon forces.
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26 How we wrote a paper from Chicago to Dundas

Luckily it picked up again 21 years later, when I spent a sabbatical year at McMaster
in 1990. This also introduced me to other new collaborators. The collaboration has been
very fruitful, as can be evinced from the list of papers collected at the end of this volume,
and from the other talks. I am glad to say that most of them are here today for this
celebration.

Although I have moved on again into the SNO project, our collaboration still continues.
In fact only 3 months ago we had another paper accepted.

Let me thank Rajatda for a very fruitful collaboration over the years and all the
physics he has taught me. T know that this is not really a retirement from research, just
from the university. I hope we have many more years collaborating.

Finally, let me thank Manju, Ronnie, Tukun, and Ronju for treating me as part of the
extended family, and the very many superb curry dinners at the Bhaduri’s.

Jimmy Law

Physics Department
University of Guelph
Guelph, Ontario

Canada
jlaw@eta.physics.uoguelph.ca



9 WHERE HAS THE MISSING 70 GONE?

We study the structure of A(1405) by means of a coupled-channel

potential model and by fitting low-energy KN data, including the
K~p scattering length obtained from the latest z-ray measurements
of the kaonic hydrogen atom. From the best fit obtained, we find
two possible interpretations of A(1405); either as (1) the 70~ three-

quark state strongly coupled with KN and 7%, or (2) a ™% reso-
nance and/or an unstable KN bound state. In the latter case, the
three-quark state that belongs to the 70~ multiplet is located slightly

above the KN threshold and results in a sharp resonance peak in
the K~ p elastic cross section at laboratory momentum 170 MeV/c.
To explore their possibilities, measurements of the m — 3 invariant
mass distribution and the K~ p cross sections with finer resolution
will be required.

The interpretation of A(1405) — either as an elementary baryon with three-quark
structure or a meson-baryon composite — has been controversial for the last few decades.
It has been a key issue in theoretical studies of the KN system at low energies and
particularly in attempts at resolving the so-called kaonic hydrogen puzzle.!»2:3:4,5:6,7,8

The puzzle was concerned with an apparent discrepancy between the 15 level shift
of the kaonic hydrogen atom determined from measurements of the atomic x-rays® 191!
and that from the low-energy KN scattering data.l>!2:13:14 The atomic data indicated a
downward shift of the 15 level, while the scattering data were extrapolated to the K™ p
threshold to predict an upward shift.!®> The puzzle itself, however, has been resolved
recently by new elaborate measurements of x-rays from the atom, which revealed an

1E. A. Veit, B. K. Jennings, A. W. Thomas, and R. C. Barrett, Phys. Rev. D 31, 1033 (1985)
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7J. Schnick and R. H. Landau, Phys. Rev. Lett. 58, 1719 (1987); P. J. Fink, Jr., G. He, R. H. Landau,
and J. W. Schnick, Phys. Rev. C 41, 2720 (1990)

8K. Tanaka and A. Suzuki, Phys. Rev. C 45, 2068 (1992)
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14R. H. Dalitz, J. McGinley, C. Belyea, and S. Anthony, in Proc. Int. Conf. on Hypernuclear and Kaon
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15Tn Ref.® within a coupled-channel potential scheme, a good overall fit to all the low-energy KN
data that was consistent with the atomic data of Refs.?1%11 was obtained. However, the resulting
K p scattering amplitude was quite different at low energies from the one determined earlier from the
Coulomb-nuclear interference.
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upward shift of the 1.5 level:!6

r
e+z’§:—323:&63:&11+%(407:l:208i100)eV, (1)

where the first and second errors correspond to the statistical and systematic errors,
respectively. Through Deser’s formula,'” the above shift and width of the 1S level can be
converted to the K ~p scattering length as

Ag-p = (—0.78 £ 0.18) + (0.49 4 0.37) fm, (2)

where the errors have been estimated simply by adding those arising from the statistical
and systematic errors in Eq. (1). This is compatible with the K~p scattering length
extracted from the scattering data.

The reason why the structure of A(1405), observed as a resonance in the 7% invariant
mass distribution, was a crucial point in explaining the puzzle is that A(1405) lies just
25 MeV below the KN threshold and has a strong influence on the low-energy KN data.
The negative Re Ay, that arises from the negative Re Ax-,, can be interpreted as due to
the existence of an isosinglet bound state of K and N, and it may be understood by the
picture that A(1405) is (mostly) a KN and/or 73 composite.!5#1213:14 However, this does
not necessarily rule out the possibility that A(1405) has an elementary-baryon component.
The SU(3) quark model indeed predicts a three-quark state that has the same quantum
numbers as A(1405), as a member of the 70~ multiplet with two partners, A(1670) and
A(1800), of J™ = 1/2". In Ref.? it has been proposed that A(1405) is dominantly this
70~ state and that its strong coupling with KN and 7% makes its mass much smaller
than the other two members.

In this work, we address the question as to whether A(1405) can be interpreted as the
70~ three-quark state, and if not, where the mass of the “missing” 70~ state can be. We
study the coupled system of KN and 7% near the KN threshold by means of a coupled-
channel potential model. To capture the essential features of the system in the energy
range considered, we mostly focus on the isosinglet states. We introduce an elementary
particle with J™ = 1/2 which represents the 70~ three-quark state (we call it Ag) and
assume that its bare mass lies within the low-energy region for K N. We adopt a separable
potential to describe the meson-baryon interaction and a Yukawa-type form for the Ay-
meson-baryon coupling. For the isotriplet states, we simplify the problem by explicitly
using the KN channel only and including the 7% and mA channels by means of complex
coupling constants. By fitting the low-energy KN data including the K ~p scattering
length of Eq. (2), and solving the eigenvalue problem for the isosinglet states, we examine
the probabilities of the three-quark and meson-baryon components in A(1405).

Two sets of parameters which best fit the low-energy KN scattering data, the K p
scattering length determined from the latest measurements of atomic x-rays, and the
73 mass distribution have been found with the bare mass of the three-quark state lying
within the low-energy region around the K N threshold. The first set allows us to interpret

16M. Iwasaki et al., Phys. Rev. Lett. 78, 3067 (1997); T. M. Ito et al., Phys. Rev. C 58, 2366 (1998)

173, Deser, M. L. Goldberger, K. Bauman, and W. Thirring, Phys. Rev. 96, 774 (1954); T. H. Trueman,
Nucl. Phys. 26, 57 (1961)
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A(1405) as the three-quark state strongly coupled with the 73 and KN channels, as
proposed in Ref.? The second set, on the contrary, reproduces A(1405) as a 7Y resonance
and/or an unstable KN bound state. For this set of parameters, the three-quark state
manifests itself as a narrow resonance in the scattering region of KN; as a sharp peak in
the K~ p elastic cross section around the data point at £ = 170 MeV /c.

We have thus two possibilities, if the bare mass of the 70~ three-quark state lies in the
low-energy region for KN: the three-quark state gives rise to either A(1405) or a sharp
resonance in the KN scattering states — in the latter case A(1405) is a meson-baryon
composite. To explore these possibilities, measurements of the 7% mass distribution and
the K~ p cross sections with finer resolution are required.

This work was done in collaboration with Kaori Tanaka,'® Masahiro Kimura,'® Taka-
hiko Miyakawa,?° Miho Takayama,?' and Atsushi Hosaka.??

We would like to thank Yuki Nogami for many helpful comments and discussions.
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10 THE LOW-ENERGY NUCLEAR DENSITY OF STATES
AND THE SADDLE-POINT APPROXIMATION

Long long ago, far far away, there was a thesis supervisor who loved to put statistical
mechanical methods to unusual uses. One problem he suggested to a hapless graduate
student was to calculate the effect of shell corrections on the low-energy nuclear density
of states. Various approaches like putting oscillating terms in the single particle density
were tried before the problem was abandoned as hopeless and the graduate student moved
on to another crazy idea — using statistical methods to derive an Extended Thomas-
Fermi model and using these methods to derive shell corrections for realistic potentials
[23, 24, 25].

In this contribution I will return to the problem of the low-energy density of states for
nuclear systems. After the 27 year break, it appears that progress can indeed be made.

The studies of nuclear level densities date back to the 1950s with work by Rozenweig,’
and by Gilbert and Cameron.? The usual technique is to calculate the partition function
and then invert the Laplace transform using the saddle-point approximation. At energies
sufficiently high for shell and pairing effects to be washed out, the density of states is
given in terms of the single-particle density of states (and its derivatives) at the Fermi
surface, the shell-correction energy, and the pairing energy. At lower energies the results
are more problematic, and typically crude extrapolations from the higher energy are used.
At low energy the saddle-point approximation itself breaks down.?

Here I explore the lower energy region using a single-particle model. In contrast to
higher energies, where the density of states depends on the shell correction and the smooth
single particle density of states, in the lower-energy regime the density of states depends
on the separation of single-particle levels and their degeneracy. Thus the dependences in
the two regimes are rather different.

The grand canonical partition function for two types of particles can be written as

et = Z exp(ayN' + azZ' — BE'), (1)
N',Z! B

where the sum is over all nuclei with N’ neutrons, Z’ protons and over all energy eigen-
states E' . The sum over eigenstates can be substituted by an integral:

=Y /dE'p(E', N'.Z")exp(anN' +azZ' — BE'), (2)

N',Z

where p(E', N', Z') is the nuclear density of states. The inversion integral is

o(E,N,Z) = (271—2)3 ?f day 74 doy 7( dBes, (3)

IN. Rozenweig, Phys. Rev. 105, 950 (1957); ibid. 108, 817 (1957)
2A. G. Cameron, Can. J. Phys. 36, 1040 (1958); A. Gilbert and A. G. Cameron, ibid. 43, 1446 (1965)
3M. K. Grossjean and H. Feldmeier, Nucl. Phys. A 444, 113 (1985)
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32 The low-energy nuclear density of states and the saddle-point approximation

where S = Q — ayN — azZ + BE. This integral is usually done by the saddle-point
approximation (one of Prof. Bhaduri’s favorite approximations). In the saddle-point ap-
proximation, the nuclear density of states is written as

eS

where D is the determinant of the second derivatives of S with respect to the parameters
an, az, and S. The determinant can be simplified to a product of factors by changing
which variables are held fixed when the derivatives are performed.

The determinant is written as

d’s d’s d’s
d,B2 dﬂdaN dﬂdaz
— d’s d’s d’s
D= dBdan da?; daydaz |° (5)
d’s d’s d’s
dBdaz daydag da,

To simplify this, I change the independent variables to 7 = 1/, uy = Tan, and uy = Tay
and change the dependent variable to Q' =7Q =75 + uyN + puzZ — E. In terms of the
new variables, the equations determining the saddle point are

o _ o _ oy

= = —7. 6
dr ’ dun ’ duz (6)

Using these equations the determinant can be written as

as dN  dZ
dr dr dr

— _9| dS dN daz
D T dun  dun  dun |’ (7)

45 dN = dZ

duz duz  dpz
In deriving this result I have used that in a determinant a multiple of a row (column) can
be added to another row (column). In the first row the derivatives are at constant py
and pz ; in the second row at constant 7 and pz, and in the third at constant 7 and uy.
I now change the variables held constant, using the equations

as|  _ds| ,ds| dN|  ds| d&z .
dr i dr |y, dN|_, dT Lt dZ|_y dr it
and
ds| _ds| 4|  ds| dz o)
dun iy dN 7 dun iy dzZ N dun iy
as|  _ds| av|  dS| az w0
diiy . dN|_, duz . dZ|_y diz .

Subtracting —jf, times the second column and —Z‘Zq‘ times the third column from the
TZ TN
first column, I have

dN dN
D=9y s | (11)
dr |y, | 4z dz

dun  duz
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This procedure can be repeated to yield

dN

Nz GpN

dz

. dS
—T -
TZ d'uZ

D = —
dr

(12)

TUN

Note the progression on the variables that are held constant. This procedure can be
extended in an iterative manner to any number of constants of motion. As if by magic, a
determinant has been turned into a product.

Does this new form help us in practice? Indeed yes! To calculate the density of states
as a function of energy for fixed particle number I need the entropy S as a function
of energy at fixed N and Z for the exponent in the numerator. The temperature can
then be obtained from dS/dE|,, = 1/7 and dS/dr|y, = —1/(m3d*S/dE?). This leaves
the derivatives of the particle numbers to be separately evaluated. Thus I have three
independent functions to parameterize.

To see that this modified form of the density of states agrees with the standard form,
I consider the independent-particle model with a constant single-particle density of states

g. The entropy then is S = 2vaE where a = wg/6. The temperature is 7 = /F/a,
dS/dr|y, = a/2, and dN/duy = dN/duy = g. This then gives the well-known formula

,— VT expl2vaB]

12 E5/4a1/4 (13)

Now let us consider a normal quantum system with a discrete spectrum. In this
case there are in general no closed forms for the various functions, so I consider the
zero-temperature limit of dN/duy. I start with an open-shell situation where there is a
partially filled shell. For this discussion it is only necessary to consider the properties of
the partially filled level. I take level to have a degeneracy of g;, an energy of ¢; and a partial
occupancy of d. As 7 goes to zero the saddle-point condition for the number of particles
becomes g1/(1 + exp[(e; — p)/7]) = dg;. Solving for u, I have p = ¢; + 71In[d/(1 — d)].
Note that this formulae breaks down for d equal to zero or one, corresponding to closed
shells. The derivative dN/du is given as g1d(1 — d)/7. Note that it diverges as 7 goes to
7€ero.

For a closed shell it necessary to consider two levels, the last filled level and the first
unfilled level. I denote the energies and degeneracies of these levels as €1, 91 and es, go.
The saddle-point condition is now go/(1+exp[(e1 — ) /7]) + g2/ (1 +exp[(e2 — ) /T]) = 61.
Solving for u, I have p = (€1 + €3)/2 — 71n[g1/go] for small temperatures. The derivative
dN/dpu is given as 2,/g1g2 exp[(€1 — €2)/(27)]/7. This goes to zero exponentially fast as 7
goes to zero. Note that in neither case is the shell correction involved.

To be useful we need an expression for S as a function of the energy. Here I again
use a few tricks. It turns out to be easier to parameterize E as a function of 7. Since
7dS = dE, L have S = [] 5%Edr' + S(r = 0). The last term is the integration constant
and is given once the degeneracy of the ground state is known. It contributes to the
exponent but not to the denominator were a derivative is taken.

Next I need E as a function of 7. For many systems there are quite reliable approxi-
mations. For very low temperatures much smaller than the level spacing, the energy does
not change significantly. However above some critical temperature, 7y, it starts to increase
rapidly. For temperatures near this region the energy can be parameterized quite simply
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by E — Ey = ¢(T — 79)%0(T — 70). I have checked this approximation using a simple shell
model and found that it works quite well except if there are several levels approximately
equally distant from the Fermi surface. The parameters 79 and ¢ depend on the level
spacing and degeneracy near the Fermi surface. Again they do not depend on the shell
correction.

Before being useful at very low energies, a short-coming of the saddle point approxi-
mation must be overcome. It is well known that at low energies the saddle-point approxi-
mation tends to diverge as the denominator goes to zero. In many cases this problem can
be fixed by using a technique from Ref.® which handles the contribution to the nuclear
density of states from the ground-state delta function explicitly. Work in combining this
idea with the present approach is in progress.

Byron K. Jennings
TRIUMF
Vancouver, BC
Canada V6T 2A3
jennings@triumf.ca



11 25 YEARS OF SEMICLASSICAL PHYSICS

Prelude

From 1973 - 1975 I was working as a young post-doc at the Niels Bohr Institute (NBI) in
Copenhagen. I had been involved with Strutinsky’s shell-correction method and studied
his numerical energy-averaging procedure in some detail, and was aware of its close relation
to the semiclassical extended Thomas-Fermi (ETF) model. I had read the paper by
Bhaduri and Ross [21] on the equivalence of the two methods, and a paper of Jennings!
which had a close overlap with my Ph.D. thesis.? Upon returning from a Summer School
in Romania to the NBI in October of 1974, I noticed a pair of newly-arrived guests: an
Indian-looking senior scientist with friendly eyes, accompanied by a young famulus with
red sidewhiskers. That is to say, before I saw them I heard that dry cough which I soon
learned to recognize amongst hundreds. (I think it has become more seldom after Rajatda
stopped smoking pipes.) Before long, the two revealed themselves as Rajat K. Bhaduri
and his Ph.D. student Byron K. Jennings.

Extended Thomas-Fermi model

Quite immediately, we got involved in discussions about ETF versus Strutinsky averaging,
and within few days I was engaged in heavy algebra. We wanted to check if the agreement
of the two methods improved for realistic Woods-Saxon potentials when higher orders in
h were included in the ETF model and, in particular, if it persisted when a spin-orbit
interaction was added to the potential [24]. There was no MAPLE and no MATHEMAT-
ICA at that time: we had to go through the Wigner-Kirkwood expansion on our bare
feet, using hundreds of sheets of scratch paper. This work on the ETF model was very
inspiring and in the process, I earned my first PRL [25].

We soon became friends and continued our discussions in the kitchen, with Rajatda
cooking chicken curry and Byron chopping the onions, as it became an established tra-
dition amongst the Bhaduri students. (I don’t remember if I myself was of any use in
the cooking process — but I have later gladly adapted the onion chopping tradition with
my students.) With Byron we applied the ETF model to rotating nuclei® which were be-
coming fashionable during those days at the NBI. Later, when Byron and I both were at
Stony Brook, we endeavoured on the use of the ETF model to develop the kinetic energy
density functional 7[p] up to fourth-order gradients. We got the right result,* although
another Canadian had beaten us to it.> I became fascinated by the semiclassical density
variational method using the ETF model and consecrated quite some effort on the self-
consistent determination of average nuclear properties.® Later I applied the self-consistent
ETF density variational method also to metal clusters.”

!B. K. Jennings, Nucl. Phys. A 207, 538 (1973)

2M. Brack and H.-C. Pauli, Nucl. Phys. A 207, 401 (1973)

3M. Brack and B. K. Jennings, Nucl. Phys. A 258, 264 (1976)

4M. Brack, B. K. Jennings, Y. H. Chu, Phys. Lett. 65 B, 1 (1976)

5C. H. Hodges, Can. J. Phys. 51, 1428 (1973)

6M. Brack, C. Guet, H.-B. Hakansson, Phys. Reports 123, 275 (1985) and references therein
"M. Brack, Phys. Rev. B 39, 3533 (1989); see also M. Brack, Rev. Mod. Phys. 65, 677 (1993)
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In 1977 - 1978 I spent some time at the Institut Laue-Langevin (ILL) at Grenoble.
Together with Peter Schuck and Mireille Durand, we attempted to overcome the notorious
turning-point divergences of the ETF model. Once again it was Rajatda who triggered our
better understanding by his paper on the partial resummation of the Wigner-Kirkwood
series [26]. Extending his idea, we calculated semiclassical densities directly from realistic
potentials,® and Jonny Bartel later expanded the method to calculate average nuclear
properties in his Ph.D. thesis.? During Rajatda’s visit to the ILL, we not only went
hiking on the glaciers of the French Alps, but we also applied the resummation technique
to the Coulomb problem and the ground-state energies and densities of atoms [28, 29].
We wrote up our papers when I visited McMaster the following fall for a longer period.

Interlude

During my first years at Regensburg University from 1978 on, I was busy preparing my
lectures and worked on the semiclassical energy density method. In the fall of 1985 I went
to a NATO summer school in Portugal, in order to present our semiclassical results for
nuclei. There I met Rajatda and Byron again after a break of several years. They were
very excited about something new: the description of the baryon excitation spectrum
in a non-relativistic deformed quark model. (It was then that I heard for the first time
Murthy’s name, who in the mean time had joined the Mac community.) As before, I could
not resist their attempts to involve me and joined the enterprise. Since I'm focusing here
on semiclassics, let me pass quickly over this part of our collaboration, in which Murthy
took the main lead [34], and also over two other adventures with Rajatda that led into
the D section of the Physical Review [30, 40]. I will also leave the story of the three-anyon
spectrum [44, 50], in which I was more of a spectator than a collaborator, to Murthy and
Jimmy.

Periodic orbit theory

But it was in the context of discussing the question of integrability or possible chaoticity
of the three-anyon system, that my next involvement with semiclassics occurred — and
ended up taking serious hold of me, although it happened in small steps. Together with
Rajatda, Murthy and Jimmy at McMaster, we wanted to educate ourselves on the level
statistics of a chaotic system and, just for fun, picked up the famous textbook potential
of Hénon and Heiles. As the old Strutinsky practitioner that I was, I ran the spectrum
through my energy-averaging routine and extracted the oscillating part of its level density.
And soon we were looking at a beautiful beating pattern that reminded us of the likewise
famous textbook example of the beating level density of a spherical cavity, investigated
long ago by Balian and Bloch.!® T had learned about the physical realization of these
beats, the so-called supershells, in the abundance spectra of metal clusters,'! and also
about their interpretation in terms of the semiclassical periodic orbit theory (POT). So
now we had to look for periodic orbits of a classical particle in the Hénon-Heiles potential.
The linear orbits A were easy to guess, but the rest needed numerical work. Jimmy the
wizard immediately came up with a solver for the classical equations of motion, and soon

8M. Durand, M. Brack, P. Schuck, Z. Phys. A 286, 381 (1978)

9J. Bartel, M. Durand, M. Brack, Z. Phys. A 315, 341 (1984)

10R. Balian and C. Bloch, Ann. Phys. (N.Y.) 69, 76 (1972)

Y. Nishioka, K. Hansen and B. R. Mottelson, Phys. Rev. B 42, 9377 (1990)
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we had found the loop orbit C; the “Smiley” orbits B took a little more searching. Next
we had to get wise on Gutzwiller’s trace formula,'? since these are isolated orbits. That
part was much harder — so hard, indeed, that we at first cheated our way around a correct
calculation of the amplitudes and Maslov indices. We fabricated a semiclassical level
density, guessing (wrongly) not only the Maslov indices but also the low-energy limit of
the amplitudes which we knew to go over into the linear ones of the analytical harmonic
oscillator. Still, we got a reasonable agreement with the smoothed quantum level density.

After presenting our preliminary results in seminar talks to POT specialists (Rajatda
in Orsay and myself in the “CATS” group at the NBI), we realized that we had to do
a more serious job. During our next common sabbatical, part of which I spent with
Rajatda in India, we joined Murthy in Madras and computed the monodromy matrix in
order to calculate correctly the Gutzwiller amplitudes of the three orbits. Although we
still cheated on the Maslov indices (which I never have learned to understand completely),
we got a PRL accepted [52]. Today I am ashamed of this paper, because the good result
was helped by a cancellation of several errors. Let this be a memento to all those (not only
young) scientists whose ambition it is to publish as many PRLs as possible: a Physical
Review Letter is no proof of solid work!

The following spring, we reunited at Mac, including Jimmy, and this time we learned
one practicable way to compute the Maslov indices. (Thanks to Stephen Creagh, who
kindly underwent a week-long on-line squeezing over e-mail.) We also increased our fun
by including a magnetic flux-line into the potential, although this made things really
tough. (It was during one of those hot working sessions that I was hit on the head —
but that story belongs to the dinner party.) Even in our “Chaos” paper [61], the overall
amplitude of the semiclassical level density and the counting of orbits was not understood
—only in an Erratum that question came to a happy end. (The problem of the low-energy
oscillator limit where the Gutzwiller amplitudes diverge has, actually, only recently been
solved after I learned about uniform approximations.'?) I will come to the role of the orbit
bifurcations, which we so far had ignored completely, at the end of this contribution.

I definitely felt the need to learn more about POT. In order to force myself to it,
I announced special lectures on this topic in Regensburg during the summer of 1993.
Inspired by Rajatda, who presented a series of lectures in Tokyo and had them nicely put
into TeX, I did the same and let my lecture notes grow when I repeated and extended my
lectures in 1994. Some time that year, I was approached by World Scientific, who invited
me to write a book on mean-field theory. But I had just given painful birth to a longer
review article and did not have the courage for further extended writing — at least not
alone. On the other hand, my vanity did not allow me to forget that offer ... And I had
those lecture notes lying around. When I met Rajatda next time, I asked him if he might
be interested in writing a book — not on mean-field theory but on the subject that we were
passionately involved with at the time, the POT. And, for that matter, on our old hobby
the ETF model. He was all for it. In March of 1995 we sketched the first contents of
“Semiclassical Physics”, and Rajatda got the publishers of his previous two books [1, 2],
Addison and Wesley, interested in the project. This was the beginning of our largest
collaboration. A collaboration that has deepened our friendship and brought us lots of
fun, fruitful fights, insight into fascinating parts of mathematical physics, more mutual

12M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971)
13M. Brack, P. Meier, K. Tanaka, J. Phys. A 32, 331 (1999)
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contacts with our families, and more Indian (and Swiss) meals. The book was finished in
December of 1996 and appeared soon thereafter [3] (alas, with lots of misprints!). Apart
from a brief study of the relation of the Weyl expansion to the POT series [68], it has
remained our latest collaboration — but I am confident that there is more to come. So far I

have not been able, though, to hook on to Rajatda, Murthy and MK’s ideas on fractional
statistics and on Bose condensates.

Actually I am still having a lot of fun with semiclassics. Just in order to intoxicate
you, let me briefly discuss two topics that have kept me busy for some time — and which

I am far from having understood. I am sure that if Rajatda could get infected with these
problems, I would sooner come to an end with them.

Why is Thomas-Fermi so good?

The first problem arose last year at McMaster, when we were discussing the fractional

statistics in a two-dimensional system (see Ref. [69]). The justification for absorbing a
0-function interaction into fractional occupation numbers goes over the two-dimensional

kinetic energy density functional 7[p] which in TF theory is proportional to p*:
h2 2 2 2
TrE[p] = %WP , where 7(r)=——— Z ¢ (r) VZgi(r), p(r) = Z ()", (1)

1 0cc
like the potential energy density of a J-function interaction. Nobody knows the exact
functional 7[p|, and there is no a priori reason to believe that the TF functional should
hold on a quantum-mechanical level. So why did it work nevertheless? For the mere fun of
it, I computed the exact quantum-mechanical densities of the circular billiard (which are
just sums of squared Bessel functions), in order to check the TF functional (1). It turned
out to perform very well, except near the boundary, including the shell effects (Figure 1,
left). This was a total surprise because, after all, I had been preaching since years that
the (E)TF functionals for 7[p] should only hold for averaged densities, without quantum
shell effects (cf. Ref. [3]). The same kind of agreement is also found in a three-dimensional
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Figure 1:  Solid lines: exact quantum-mechanical kinetic energy density 7(r).
Dashed lines: TF functional mrp[p(r)] (1) using the exact quantum-mechanical spa-
tial density p(r). Left: for 102 particles in a circular billiard with unit radius. Right:
for 110 particles (10 filled shells) in a two-dimensional harmonic oscillator potential
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spherical billiard. Maybe, one might ponder, is this due to the constant potential inside?
So I next looked at isotropic harmonic oscillators. The result is even better there (Figure
1, right); it becomes still better with increasing dimension. The particular thing about
two dimensions is that the functional (1) is quadratic in p. If we insert the exact density
p(r) of a two-dimensional harmonic oscillator with M +1 filled shells into it and integrate
Trr|p] analytically, we obtain the ezact quantum-mechanical total kinetic energy:
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This holds exactly only in two dimensions. But even there it ought to be forbidden.
Is the TF functional perhaps exact in this case? In the variational sense, it is not,
because the exact density p(r) is not a solution of the TF variational equation. On
the other hand, we know that the ETF model for 7[p] gives a zero Weizsicker co-
efficient in two dimensions [3], and there is evidence that there are no higher-order
gradient corrections at all in two dim-
ensions.” But that the integral (2) gives
the exact kinetic energy is perhaps a par-
tial explanation why fractional statistics
work for a two-dimensional d-function in-
teraction. Perhaps our result is relevant in
the context of what mathematicians call
the “Lieb-Thirring inequalities”.® As we 0.99998 0.99999 1.0
are not sure whether physicists or mathe- €
maticians are least interested in these re-
sults, we have not published them yet.
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Zooming into chaos

The other subject that fascinates me are
the bifurcations of the A orbit in the
Hénon-Heiles potential. This is the lin- 0.9992 0.9996 1.0
ear orbit along a symmetry axis, along €
which the particle pendulates in the di-
rection of the barrier (located at energy
e = 1). With increasing energy, it under-
goes an infinite number of bifurcations; in
the limit e — 1 its period becomes infin-
ity. A measure of stability is given by the

t_race of the stability matrix M. Blfgrca— 0.97 098 ¢ 0.99 10
tions occur whenever trM = 2. In Figure _ - _
2 we show trM versus energy e for the or- Figure 2: Trace of stability matrix M of or-

bit A and the orbits born at successive pitch-

fork bifurcations in the Hénon-Heiles poten-

" i tial, versus scaled energy e. Subscripts are
M. Brack and B. van Zyl, to be published Maslov indices. From bottom to top: succes-
bsee, e.g., T. Weidl, Comm. Math. Phys. 178, sively zoomed energy scale near e = 1.
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one unit at each bifurcation) and for the orbits born at these bifurcations. In the lowest
panel, we see the uppermost 3% of the energy scale available for the orbit A. The first
bifurcation occurs at e ~ 0.969, where A; becomes unstable (with trM > 2) and a
new stable orbit, which I call 85 (see its squeezed “figure 8” shape in Fig. 3), is born.
At e ~ 0.987, orbit Ag becomes stable again and a new unstable orbit Sg is born. In
the middle panel, we have zoomed the uppermost 3% of the latter energy scale. Here
the behaviour of A repeats itself, with the new orbits ®; and Jg born at the next two
bifurcations. Zooming with the same factor to the top panel, we see the birth of Mg and
Kig. This can be repeated ad infinitum: each new figure will be a replica of the previous
one, with all the Maslov indices increased by two units and with trM of orbit A oscillating
forever. Note that we have only shown here the primitives (i.e., the first repetitions) of
each orbit. The higher repetitions of A will also undergo regular bifurcations and exhibit
a corresponding fractal behaviour. This infinite proliferation of stable and unstable orbits
creates an increasingly mixed phase space and paves the “Feigenbaum route” to chaos.'

Let us have a look at the shapes of the orbits born at these bifurcations. In Figure
3 they are shown from left to right with increasing Maslov indices, all evaluated at the
barrier energy e = 1. Note that these are all stable or unstable periodic oscillations around
the original linear orbit A, which is oriented here along the y axis. The closer they are
born to e = 1, the smaller is their amplitude in the z direction when they have reached
the barrier. Therefore, in the upper part of the figure, the x axis has been zoomed by a
factor 0.163 from each panel to the next. The orbits look practically identical in the lower
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Figure 3: Orbits bifurcated from the A orbit in the Hénon-Heiles potential, shown with
increasing Maslov indices from left to right, all evaluated at the barrier energy e = 1.
Dashed lines: stable orbits (odd indices), solid lines: unstable orbits (even indices). Top
panels: successive scaling of z axis only; bottom panels: successive scaling of both axes
with the same factors; along the y axis only the top part (starting from y = 1) is shown.

14M. J. Feigenbaum, Physica 7 D, 16 (1983); see also J. M. Greene et al., Physica 3 D, 486 (1981)
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97% of the y scale; only near the barrier, which lies at ¥ = 1, do they oscillate more
and more. In the lower part of the figure, we have zoomed also the y axis by the same
factor from one panel to the next, and plotted only the uppermost part of each orbit
(starting from y = 1). In these blown-up scales, the tips of the orbits exhibit a perfect
self-similarity that goes along with the fractal behaviour of their bifurcations.

So far these are, of course, just results of classical non-linear dynamics. To use them for
semiclassics, we have to include the contributions of all these orbits into the trace formula
which, however, has to be improved. The standard formula of Gutzwiller does not hold,
as its amplitudes diverge at the bifurcations. But since these bifurcations lie increasingly
closer with increasing energy, the uniform approximations for isolated bifurcations'® also
cannot be used. There is some hope for handling the present situation with a method that
was developed by our Ukrainian friends under the leadership of Sasha Magner (another
semiclassics addict). For the elliptic billiard they were able to incorporate an infinity
of bifurcations of the short diameter orbit and all its repetitions in an improved trace
formula.'® We are presently trying to apply their technique to the A orbit in the Hénon-
Heiles potential and similar other potentials,'” which leads us to fascinating mathematical
physics. The y(¢) motion of the A orbit is given by Jacobian elliptic functions. The motion
of a small perturbation dz(t) in the perpendicular direction is given by the harmonic-
oscillator equation with a periodically time-dependent frequency, which is a special case
of a type of differential equations studied over 150 years ago by Lamé.

So there is still a lot of hard and interesting work to do — and for sure also a lot more
fun to be had. And all this only because on a spring day in 1992 at McMaster, Rajatda
came to think of the Hénon-Heiles potential ...

Postlude

To end my story, let me thank Rajatda for all the fascinating physics that he has lead
me to discover over 25 years. For the curiosity and the drive by which he attacks new
problems and opens up new lines of thought. For the fun we had in our discussions, but
also for the fights — which at times even turned out to be indicators that I was not totally
wrong. For sharing his enormously broad overview of many different branches of physics.
But first of all, for extending his friendship and his fine human culture to me, and thereby
introducing me to the cultures of his two home countries, India and Canada.

I also want to include Manjudi, Ronnie, Ranju, Mallika and Sharmila in my thanks for
many unforgettable hours in my Indian-Canadian homes at Dundas (in the first house on
Skyline Drive, I met also “Frosty” the puppy dog), with good food, entertaining movies
and games.

Matthias Brack

Institut fiir Theoretische Physik
Universitat Regensburg

D-93040 Regensburg, Germany
matthias.brack@physik.uni-regensburg.de

5see, e.g., H. Schomerus and M. Sieber, J. Phys. A 30, 4537 (1997)
16 A, Magner, S. N. Fedotkin, et al., Prog. Theor. Phys. (Japan) 102, 551 (1999)
17A. Magner, S. Fedotkin and M. Brack, work in progress
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12 CHICKEN CURRY AND HOT NUCLEI

An enjoyable start for my Ph.D. thesis

My first encounter with Professor Bhaduri goes back to the summer of 1978. T had just
finished my undergraduate studies at Darmstadt and came as a graduate student to the
Institut Laue-Langevin in Grenoble to work on semiclassical approximations in nuclear
physics. I believe I had already been told that when I would come to Grenoble, there
would also be one of the world’s specialists on semiclassical nuclear physics, a certain
Professor Rajat Bhaduri from McMaster University, spending part of his sabbatical year
in Grenoble. At first I was very impressed, keeping somehow at distance to somebody so
far superior to me, the little ignorant student. But when I met the man personally, my
admiration increased and my “keeping distances” was immediately swept away. There
was such a friendliness and directness in his attitude that you simply could not resist. It
also turned out that the Institute had reserved for me a room that was only a very short
distance away from where Professor Bhaduri lived during his stay in Grenoble.

At work he immediately came to explain me what the Wigner-Kirkwood expansion
of the partition function was all about, and how one could obtain therefrom a semiclassical
expansion of the energy [21, 24]. That was hardly how a teacher would talk to his student,
but could be rather characterized by: “Look how much pleasure you can get out of
physics”. We worked hard, but it was never strenuous and we had just a lot of fun.

Since we lived very close to one another, Professor Bhaduri invited me to his place —
probably already the very first evening — for cooking and having a bottle of French wine
together. He told me that he didn’t really know to cook, that his wife Manju was a much
better cook, but that there was one thing he was not too bad at: chicken curry. He also
mentioned that his collaborators always had the job of cutting the onions and I gladly
conformed to that rule. For the following weeks we often sat together with chicken curry
and Cotes du Rhone, and by the end of his stay I had almost become an expert in curry.
And since he has always shared his knowledge with others, I would like to share with you
what I have learned about chicken curry [27] (see box on the next page).

At the end of that evening it had just become impossible to say “Professor Bhaduri”
any more, and this internationally renowned man, author of the book Nuclear Structure
[1] which T still nowadays, 25 years after its first appearance, highly recommend to my
students as one of the best in this field of physics, had become “Rajat”.

1,2

Resummation technique and saddle-point method

During the following weeks, Rajat explained a lot of physics to me and I started to get
familiar with the semiclassical approximations. I worked on the resummation technique
which allows to cure the so-called turning-point problem for local densities like p(r) and
7(r) that can be expressed as inverse Laplace transforms of the Bloch density C(r,r'; 3).
Due to the specific form of the semiclassical expansion?®? of C, which constitutes an
expansion simultaneously in 7 and the derivatives of the single-particle potential V (r),
one obtains terms like

LE. P. Wigner, Phys. Rev. 40, 749 (1932)
2]J. G. Kirkwood, Phys. Rev. 44, 31 (1933)
3B. Grammaticos, A. Voros, Ann. Phys. (N.Y.) 123, 359 (1979)
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44 Chicken curry and hot nuclei

Chicken Curry (recipe for 2 persons):

e Take one medium sized chicken and cut into pieces. Take off the skin
and any fat if present (in later years this part of the recipe had become
inessential).

e Cut 3-4 onions, 2-3 cloves of garlic and a piece of fresh ginger into pieces
and fry the whole in vegetable oil at moderately high temperature in a big
pot.

e When the onions start to get golden, put the pieces of chicken and the spices:
2 coffee spoons of turmeric, 1-2 coffee spoons of curry powder (depending
on how hot the curry is and how hot you like to make it — Indian people
like it really hot) and fry. (According to the Chef: “the spices need to be
fried together with the chicken”.)

e Put 3-4 potatoes cut into pieces (4 to 6 each), salt, pepper, some chili
powder and a few seeds of cardamom. Cover and let cook at rather low
heat for about half an hour (but don’t burn it!).

e Put several tomatoes cut into pieces and wait until they have started to
dissolve, making some nice gravy.

e Serve with rice.

Bon appétit!

L1 ie—ﬂV(r) = R CHOOL P VB g8 = b [\ — V(r)]”_l O\ — V()] (1)
B | gn 2mi J g ['(n) ’

which diverge at the classical turning point. The idea of the resummation technique is
now to resum, to all powers in 7, the derivatives of V(r) up to a certain order. Doing this
up to first derivatives one obtains a Bloch density of the form [26]

3/2 N , 2
0(1)(1', r’; B) — (27_:;‘712) e*ﬂV(R)*%zﬂs?+ﬁ—m,B3(VV)2 _ C(TF)(I-,I-’; /@) ezfi—mﬂ?’(VVf’ (2)

with R = (r +r’)/2 and s = r — r’. Taking the inverse Laplace transform of this
Bloch density one obtains a density matrix which is perfectly well defined everywhere
even beyond the classical turning point. One can proceed in the same way resumming all
derivatives of V(r) up to second order. By a transformation to local normal coordinates
it is possible to make the problem separable and write the harmonized Bloch density
C®@(r,r’; 8) as a product of three Bloch densities of one-dimensional oscillators with
frequencies w;.*

4M. Durand, M. Brack, P. Schuck, Z. Phys. A 286, 381 (1978)
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It appears that while the harmonized Bloch density is rather complicated, the lin-
earized form of C(r, 3) generates densities that fall off too fast in the surface. It required
again the ingenuity of Rajat to propose a form of the Bloch density [26] that combines the
simplicity of the linearized form C™(r;3) with the advantages of having some second-
order derivatives included, by writing

m 3/2 hz K2 53 2

The Bloch densities C™)(r, 3) and C® (r, 8) discussed above correspond to approximating
V(r) locally by a linear or a harmonic potential, respectively. These linear or harmonic
potentials possess local quantum oscillations that have, in fact, nothing to do with the
quantum oscillations of the potential that one is considering and that are of global na-
ture. This, in turn, creates density oscillations in the nuclear interior that are completely
spurious. One therefore needs to find a method to average out these spurious oscillations
for obtaining the correct semiclassical contribution. It turns out that the saddle-point
method is such a procedure.
If one knows the exact Bloch density and solves the inverse Laplace transform

C(r,r'; 1
plr,r) = £, [%] =5 | @50Erim i (4)
C—100
(with ¢ > 0) without introducing any approximations, it is clear that one will obtain
the exact density matrix including all quantum oscillations. The problem is now that
using the above approximate forms of the Bloch density one will obtain, together with
the average part of the density, the spurious quantum oscillations mentioned above. The
average, i.e. semiclassical part of the density is given by the singularity of the integrand
of Eq. (4) at 8 = 0, whereas the contributions from other singularities in the complex
plain correspond to the quantum oscillations.

Already at that time Rajat pointed out to me that the saddle-point or steepest-descent
method® allows one to separate out the semiclassical contribution from this integral [26].
Writing the integral in Eq. (4) in the form

c+ioco c+ioco

1 al 3 _L/ S(8)
m_/ NSO B dB = o | s, (5)

expanding the complex-valued function S(3) around S, defined by 0S/08|s, = 0 up to
second order, and taking into account higher-order terms in a series expansion of the
exponential, one obtains

c+i00
1 $B) g5 — |27 _s(80) .
271 _/ € df = S”(BO) € [1 +Ci+ 0+ ] ) (6)

where (', Cy, etc., are saddle-point corrections defined in terms of the higher-order deriva-
tives of S(B) at 8 = fo.

S5P. Morse, H. Feshbach: Methods of theoretical physics, Vol. I (Mc-Graw-Hill, 1953)
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To illustrate the semiclassical nature of the saddle-point method let us shortly consider
the level density of a spherically-symmetric harmonic oscillator.® It is given by the inverse
Laplace transform of the exact partition function

1
2(8) = [ Cles ) dr = £..,[o(6)] = g sinh=(S1o). (7)
The corresponding semiclassical level density is known [21] to be given by
()= ! (8)
sc\€) = - .
I 2 (hw)®  8hw
Performing the integral by the saddle-point method without corrections yields
11, z +1\%/?
= (22-1
we) = =m0 () )

where x = 2¢/3hw. In the semiclassical limit of large quantum numbers, z > 1, this
reduces to Lo ) )
e € €
g) = —————= ~ 1.028——— .
90() = 5 /5w ) 2(hw)?
Taking into account successively the first and the second saddle-point corrections, one
obtains in the limit x > 1 the approximations

g? _ %L g2 _ 2520 1 (11)
2(hw)® 35 8hw (hw)® 2521 8hw |

This example is given here as a demonstration that the steepest-descent method is indeed
a semiclassical approach, in a way similar to the Strutinsky smoothing. But another
reason is that Rajat likes this kind of Mickey Mouse examples, as he calls them, from
which you can learn a lot of physics (and math).

As another illustration of the semiclassical character of the saddle-point method, let
me give in Tab. 1 the energies of N = Z nucleons in a spherical Woods-Saxon potential,

(10)

gl(s)w0.9995l ] ga(€) % 0.9999 | 5

N=2| Err Ey Ey Epn Eprr Estr
20 -717.6 | -754.0 | -686.3 | -683.5 | -680.8
36 -1368.2 | -1420.6 | -1322.2 | -1318.2 | -1315.0 | -1315.4
82 -3344.6 | -3432.5 | -3267.1 | -3259.1 | -3254.9 | -3256.0
130 | -5484.5 | -5602.4 | -5381.3 | -5369.0 | -5364.0 | -5364.4
208 | -9044.7 | -9203.9 | -8906.3 | -8887.5 | -8881.5 | -8882.8

Table 1:Semiclassical energies of N = Z particles in a spherical Woods-Saxon potential
(Vo = 44.0 MeV, a = 0.67 fm, Ry = 1.27 AL/3 fm), using the Bloch densities cTF),

cW, c®@, C¢Bh) and the saddle-point method.® The ETF energy (Egrr) and the
Strutinsky-averaged quantum-mechanical energy (FEgy,) are taken from Ref. [25].

6J. Bartel, M. Durand, M. Brack, Z. Phys. A 315, 341 (1984)
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calculated with the saddle-point method and using the different Bloch densities. It clearly
shows that in addition to its simplicity, the Bhaduri approximation (3) yields the best
results, often far better than the harmonized approximation. It has also been shown®
that both these approximations are able to approximate the quantum-mechanical density
distributions very well on the average, i.e., washing out shell oscillations in the interior.

One can now attempt to use these semiclassical approximations to perform selfconsis-
tent semiclassical calculations, based on the partial resummation technique together with
effective nucleon-nucleon interactions of the Skyrme type.””® When Rajat left Grenoble
that summer of 1978, he invited me to McMaster for collaborating with Michel Valliéres
on the selfconsistency problem, using the partial 4 resummation. So I went to Hamilton
in the spring of 1979 where 1 worked with Rajat and Michel for 2 months. I had a very
nice time staying with Rajat and his family in the beginning, meeting Manju, his wife,
Ronnie and Ranju, their two sons, and Mallika (Tukun), their little daughter who was 3
or 4 years old by then. She often came to me asking: “Jonny, do you have candies?” How
could T resist?

After my stay at McMaster, Michel Valliéres came to Grenoble where we continued our
work and finally got it to converge, after solving®1? the problem of numerical instabilities
that emerged in the Hartree-Fock like iterative procedure of the selfconsistency cycle and
that are coming from the asymptotic nature of the saddle-point correction series.

Hot stuff

As I mentioned hot nuclei in the title of my talk, it is about time to start talking about
semiclassical calculations at finite temperature. One can show'! that the single-particle
free energy can be written as

Fp=3e"n" =18 = [eg,()de, (12)
J

where (the Boltzmann constant is put to unity and temperatures 7" measured in MeV)

0r(6) = X2 g cosh * (52 =Z frle =€) S o(E' — ;) de (13)

J

is the temperature-averaged single-particle level density convoluted with the function

1 €
— ~ cosh~? (—) . 14
Frle) = g cosh™ (= (14)
Using the folding theorem for Laplace transforms one can write the temperature-depen-
dent partition function Zr(f8), which is the (two-sided) Laplace transform of the level
density g, (¢), in the form

Zr(B) = Z(B) fr(B), (15)

"T. R. Skyrme, Nucl. Phys. 9, 615 (1959)

8D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972)

9J. Bartel and M. Vallieres, Phys. Lett. 114 B, 303 (1982)

107, Bartel, Ph.D. thesis (Universitiit Regensburg, 1984), unpublished
HM. Brack, P. Quentin, Nucl. Phys. A361, 35 (1981)
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where Z(f) is the partition function at zero temperature and fr(3) the two-sided Laplace
transform of the temperature averaging function fr(e), Eq. (14)

fr(B) = L. ,[fr(e)] = szfigT) '

(16)
It then follows from Eq. (15) that the temperature-dependent Bloch density can be simply
written as

Cr(r,r’; 8) = C(r,x"; B) fr(B) - (17)
With the Bloch density at finite temperature defined in this way, all selfconsistent semi-
classical calculations can be carried through exactly like in the case of cold nuclei.?
Coming back to the Mickey Mouse example of the single-particle level density in a
spherical harmonic oscillator, but now considering the case of finite temperatures where all
calculations can again be performed analytically, one can demonstrate how the excitation
of a fermion system washes out all shell effects and how, at temperatures T 2, hiw/2,
the exact level density (containing all quantum effects) has become essentially of pure
semiclassical nature. This is demonstrated in chapter 3 of Rajat’s and Matthias’ book
Semiclassical Physics [3].
One can also generalize the extended Thomas-Fermi theory to finite temperatures,?
which allows to derive functional expressions for the kinetic energy density TJ(E?F[p] or

the free-energy density ]—",EJTT)F[,O] and the entropy density ogﬂTT)F[p] in a similar way as it
was done at zero temperature. One obtains again expansions, e.g., for the kinetic-energy
density functional 7[p], in terms of the local density and its derivatives. The coefficients of
this expansion are now given in terms of ratios of Fermi integrals of half-integer indices!.
Since at finite temperatures the densities pgrr(r), Ferr(r), 7Terr(r), etc., are perfectly
well defined in all space, we do not encounter here the turning-point problem that was
present at zero temperature. One can therefore use the functional expressions derived at
finite 7" and take the limit 7" — 0 to test the validity of the ETF functionals which had
been derived in the classically allowed region only, also beyond the classical turning point.
It was the merit of Matthias to have made this demonstration.*

For my part I would like to thank you, Rajat, for your friendship and for the time we
have spent together, doing physics, cooking curry or smoking a pipe — just another thing
you got me into, saying that it might cure my cough. But whatever you do, together with
Rajat it turns out to be fun. Thank you for that, Rajat, and

Happy Birthday!

Johann Bartel

Institut de Recherches Subatomiques
Université Louis Pasteur

F-67200 Strasbourg, France
johann.bartel@ires.in2p3.fr

127, Bartel, M. Brack, C. Guet, H.-B. Hikansson, Phys. Lett. 139 B, 1 (1984)
137, Bartel, M. Brack, M. Durand, Nucl. Phys. A 445, 263 (1985)
LM, Brack, Phys. Rev. Lett. 53, 119 (1984); ibid. (Erratum) 54, 851 (1985)



13 CHAOTIC EVOLUTION IN THEORETICAL PHYSICS
FROM MCMASTER INITIAL CONDITIONS

A difficult exercise

It is a constant among different types of societies to prize features of personal characters
most likely leading to some kind of social achievements. The adjective “positive” is often
quoted but one has to admit that the concept is rather elusive. Being rational in such
matters is certainly not easy. Certain criteria have to be set up and the choice here is
of course “ad libitum” and certainly prejudiced. The task becomes even more difficult
if the course of life and activities in physics are somewhat chaotic at first glance, with
only occasional overlap with Rajat over the years. Moreover, as well known by now, an
important characteristic of chaotic evolution is the memory loss of the initial conditions.

I will try to use criteria relevant enough to resist the erosion of time and allege that
my evolution in physics is not so disordered to have lost the original messages of my
McMaster tutors.

What kind of criteria?

In the search for time-resisting criteria it is natural to turn back to the philosophic heritage
of our western world.

Socrates did not teach regularly, neither did he publish any book — and nevertheless his
messages did not perish. He was hostile to any dogmatic teaching, and his method is basic
to student education in general. His way was to lead his interlocutor to truly fundamental
considerations, trough ironic questions and forcing them to face their own contradictions.
He gathered considerable influence over the youth, and was sentenced to death for this
very reason. Fortunately, times have changed in this respect and, as a graduate student,
it was my feeling that Rajat followed the same approach to discussions, however safely,
till today. This experience took place in the seventies during my Ph.D. years. I witnessed
and was part of many heated discussions on the method of “shell corrections” and “three-
body forces”. Rajat’s contribution with Yuki Nogami and Carl Ross [19] was the origin
of a subsequent work with Carl, Yuki, and Donald Sprung,' ending only for me in 1988.2

But let me elaborate further on the conditions of a scientific dialogue, as I experienced
it with Rajat during this period. As most graduate students deeply involved in their own
subject, I had the natural tendency to practice first a monologue based on certitudes.
In keeping with Socrates’ practice, Rajat had a way to bring me to dialogue through
apparently innocent if not ignorant questions to which he claimed not to know the answers.
Since most of the time I did not know them either the effect was a salutary shake of my
early born certitudes. I quickly learned that every piece of knowledge is always to be
questioned and there is no subject, even apparently settled, which does not deserve a
fresh and critical look up.

IP. Grangé, M. Martzolff, Y. Nogami, D. W. L. Sprung and C. K. Ross, Phys. Lett. 60 B, 237 (1976)
2P. Grangé, A. Lejeune, M. Martzolff, J. F. Mathiot, Phys. Rev. C 40, 1040 (1989)
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50 Chaotic evolution in theoretical physics from McMaster initial conditions

During my stay in Heidelberg and throughout my long collaboration with Hans Wei-
denmiiller this conscious uncertainty was a major theme of our discussions. We came to
question the foundation of the “statistical theory of nuclei” and discovered the impor-
tance of transient behaviour in the competitive decay of excited nuclei. The many-body
problem in its semiclassical aspects, so carefully disentangled by Rajat and our colleagues
here today, was a keystone to this investigation, the other being the stochastic evolution
of the collective variables. Here was my first contact with “stochastic processes” and a
subsequent chaotic evolution to field theory. But I did not really lose the memory of the
initial training since I had interest in the subject from undergraduate courses and Yuki
Nogami’s graduate teaching.

Another fruitful experience can be phrased in terms of Plato’s symbolic tale of the
cave. Indeed, the newly born graduate facing permanent research obligations is very much
like the prisoner in the cave. His early vision of Physics is enlightened by the back light
of his masters’ teaching. After 2500 years almost every argument of Plato’s analysis is
still valid. How to free oneself and take the way to the entrance of the cave to reach full
light? Again the capacity to do so is the real signature of a successful education. But
at the same time it is equally important to understand that this search for an intelligible
world is a constant lesson of humility because of proper human limitations. The message
I gathered from Rajat was to look beyond the appearance of the shadows in the cave
and their puppeteers, focusing only on problems away from artifacts, in the most simple
possible way ever.

For all these long-lasting principles I believe that Rajat accomplished a very distinctive
career in research and teaching. I owe him full recognition, also for the warmth of his
“Epicurean” hospitality. But this is another aspect which will certainly be emphasized
by all his colleagues and friends here.

I want to thank all those who took part in setting up this memorable gathering, and
Matthias Brack in particular.

Pierre Grangé

Laboratoire de Physique Mathématique
Université Montpellier 11

Place E. Bataillon

F-34095 Montpellier

France

grange@lpm.univ-montp2.fr



14 TALES FROM THE FLAT LAND

Rajat Bhaduri, Rajatda in short for many of us, has an impeccable sense of direction,
quantized via the so-called “Bhaduri phase” ¢pg,. If he has to go somewhere, his intuition
is to approximately start out in the opposite direction. Hence ¢g, = 7. My wife, Hema,
has the same impeccable sense of direction. Once, on a nice summer day in Dundas,
Rajatda thought he should start his gardening. He set out to get some nice flowering
plants from a nearby nursery, just about five minutes drive from home. Hema joined him
in this endeavour as his navigator. They came back after about two and a half hours with
some nice plants collected from all over the place except from the intended nursery. It was
later "admitted” that they ”lost their way” and instead of heading back to Dundas, they
were half way down to Guelph or Waterloo. But then he found "new pastures” which
would not have been obvious to those who head straight. In a sense this also illustrates
Rajatda’s search for new ideas and avenues in Physics. I have thoroughly enjoyed joining
him in his enduring Odyssey all these years without a break. There is certainly a lot of
excitement and fun extending from Physics to Cooking. I consider myself fortunate to
belong to this big family of Bhaduri’s; trust me it is really a big one.

I met Rajatda way back in 1981 in Bangalore when both of us were spending a few
months at the Centre for Theoretical Studies. For those of us who had read that excellent
book on Nuclear Structure by Preston and Bhaduri [1], he was of course a familiar name.
I had just finished my Ph.D. and a year of teaching in the University of Mysore. We use
to head for lunch together, where he would devour his favourite Dosa and I, my curd rice.
We got used to discussing various topics of our common interest during those luncheon
meetings. Occasionally we were joined in by his wife Manjudi and the children. In one
of those lunch breaks, Rajatda asked me if I would join him at McMaster University as a
post-doctoral fellow. I did say yes, though until then I had not seriously considered going
abroad. However, I could join him only after nearly two years since I was committed to
go to Tata Institute of Fundamental Research (TIFR) in Bombay.

It was my good fortune that Rajatda kept the offer open and he also assisted my wife
Hema, whom I married while still at TIFR, in getting admission to McMaster University.
Finally, I arrived in Hamilton on a nice summer day in May 1983, to be joined by Hema
at end of August the same year. I also won an unofficial bet with Rajatda soon after
arrival. Driving me from the airport, Rajatda quizzed me about my food habits. On
learning that I am a vegetarian he announced that I would soon be eating chicken. It
was challenging enough for me to announce this as a bet, with the time limit of one year.
I have not touched a chicken, dead or alive, in my life as yet, let alone eat it. The bet
itself fizzled out since we did not shake hands — how could I, since he was driving when
we took the bet, and in any case I did not know at that time that this formality had to be
completed for any bet to be official. Later when he innocently asked if we shook hands,
I said no without realizing the big blunder about to be committed.

After some initial fishing around, we began our collaboration on the baryon spec-
troscopy. By the time I reached McMaster in May 1983, Rajatda, Byron and Jim had
already started working on the spectroscopy of baryons, sowing the seeds of the so called
deformed quark model [31]. The basic idea came from the experimental result that the
first breathing mode excitation, the so called Roper resonance, was found to have an

51



52 Tales from the flat land

energy lower than the P-wave baryons. This is surprising considering the fact in a shell
model type description the breathing mode is actually a second excitation which should
be higher than the first excitation, namely the P-wave or odd parity excitations. This
however is a very normal occurrence in nuclear physics where such phenomena are com-
mon whenever the mean field is deformed. The deformed quark model was inspired by
this well known fact. In collaboration with Jishnu and Mira first [32, 33], and later with
Matthias and Byron [34], we set out to do the full spectroscopy of nucleon and delta
excitations with deformation of the mean field as the central idea. Indeed we did manage
to pin down the Roper resonance to its right energy while getting reasonable agreement
for not only P-wave baryons but also the higher resonances up to about 2.2 GeV. Later
we also did the spectroscopy of strange baryons with some success [35]. While the quark
models are yet to be put on a firm footing from the point of view of the theory of strong
interactions, it remains a fact that the deformed quark model provides the simplest ex-
planation to the Roper puzzle. Some experts in baryon spectroscopy still view this as an
outstanding problem. Together with Matthias, we also looked at the radiative transitions
in non-strange baryons. The deformed quark model remains, however, largely ignored
which may be partly due to the fact that as a calculational tool it is not as amenable as
the simple non-relativistic quark model.

After spending a couple of years on the deformed quark model, we drifted around to
various, not so greener, pastures. Some time during 1985, there was a letter from Rajaji
from Madras asking Rajatda to suggest some young people for faculty positions opening
up in the Institute of Mathematical Sciences, Madras. Rajatda promptly suggested me
and soon we settled down in Madras. During this period Rajatda also introduced me
to the nuances of the so called EMC effect — this effect has to do with the differences
between measured free nucleon and bound nucleon structure functions as a function of
the momentum fraction. While analyzing this effect [38], I got introduced to aspects of
perturbative quantum chromodynamics (QCD). Later I continued my work on perturba-
tive QCD with my students in Madras, while Rajatda was working on chiral Lagrangians,
the Nambu-Jona Lasinio model, etc. He even sat and wrote up his second book, ” Models
of the Nucleon — From Quarks to Soliton” [2] during that time.

I went back to McMaster in 1990 for a year on leave from Madras, and thus began
the second phase of intense interaction with Rajatda. These were the heady days of
high-temperature superconductivity. Several theoretical ideas were floating around, one
of which is the so called ”anyon superconductivity”. Anyons had been around for over
a decade by then, but became topical only after the high-temperature superconductivity
was discovered. Anyons are particles with arbitrary statistics under exchange, and live
in a two-dimensional world. The statistics is characterized by a single parameter that
resembles a Berry phase (in the sense that it is topological). For integer values of this
parameter one recovers the usual Bose and Fermi statistics. Rajatda had been interested
for a few months in this even before my arrival, and as soon as I arrived he gave me
a run down on anyons. I had heard a few seminars before on anyons but did not get
much out of them. Rajatda gave me an introduction to the quantum mechanics of two
anyons in his usual pedagogical manner and got me interested in the subject matter of
anyons. Thus began our "random walk in the flat land” which is continuing even today.
He had already calculated the two-anyon canonical partition function and the second
virial coefficient using a semiclassical method (he loves this subject). This could also be
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calculated exactly, but the semiclassical method gives the exact answer, surprising but
not difficult to understand. The real problem was in calculating the third virial coefficient
in the equation of state — this requires in principle the solution of the three-anyon problem
which is a difficult problem. We (with Jimmy, Avinash and Rajeev) made some progress
using semiclassical methods [43]. Later Rajatda pursued this problem further after the
three-body quantum spectrum was solved to some extent with Jimmy and Akira.

The insufficient progress, initially, in computing the third virial coefficient spurred us
to actually look at the problem of solving the three-anyon spectrum exactly, at least the
ground state and the low-lying excitations. Even the structure of the ground state was
an outstanding problem. The last paper on this problem had actually been written by
Yong Shi Wu in 1984, where the problems were first mentioned. By this time Matthias
was also roped in and Jimmy was already there. We set out to do this numerically by
diagonalizing the three-anyon Hamiltonian. By May of 1991, we had a pretty good idea
about how the ground state interpolates between the bosonic and the fermionic limits as
a function of the statistical parameter and we were looking at the excited states. Rajatda
organized the 70th birthday symposium for Mel Preston during this period. One of the
invitees was Gerry Brown from SUNY at Stony Brook. After the birthday symposium we
met informally with Gerry Brown and described various things we were doing including
the progress we were making with the three-anyon problem.

A couple of weeks later, Rajatda received a letter from Gerry Brown that a paper had
been submitted to PRL from Stony Brook on precisely the three-anyon spectrum by his
colleagues Sporre, Verbaarschot and Zahed. There were indications in his letter that the
results might be similar to what we had. Rajatda showed me the letter around three in
the afternoon. I was very disappointed since we had spent non-trivial amounts of time
and effort on this problem and the result was sufficiently interesting and exciting. But
before I could say anything, Rajatda announced that we were going to write a paper and
submit it the next morning (which would mean a gap of two or three days from the Stony
Brook paper). By then we had only the raw numbers on computer printouts, and TeX or
LaTeX were not yet popular as they are now. Rajatda decided that he would write the
initial part of the paper, I would write the rest of the text and Jimmy was informed on
the phone to arrive immediately and prepare the figures for publication. Hema (who was
visiting me that summer from Madras while attending an IEEE conference at Toronto)
had the least idea of what was going on, and was asked by Rajatda to help us with
the preparation of the manuscript. We assembled immediately after dinner in our offices
on the third floor of the Senior Sciences Building and the race to finish began in right
earnest. Rajatda and I wrote up the paper and as we finished each page, it was handed
over to Hema who was patiently putting everything together on the computer using a
long forgotten text processor called Chiwriter. By about four in the morning we had a
working manuscript which was edited and finalized by about six in the morning. Jimmy
had arrived by then and was preparing the figures. The completed paper was dispatched
by ten in the morning through a Courier by Jimmy. But Matthias, our other collaborator,
had no clue about what was going on and was informed about it later in the day. He joined
us in the celebration later when he came back to McMaster. The enthusiasm rubbed off
on the family members also, Manjudi would keep inquiring about the fate of our paper
often. To the credit of the editors, the two papers, one from Stony Brook and this one
from McMaster, appeared back to back in the same issue of PRL [44] (see also [50]).
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Around this time, Rajatda brought to my notice a paper by Duncan Haldane on a
generalization of the Pauli principle! which was not specific any dimension as anyons
were (they lived only in this flatland). True to his insight, Rajatda recognized that this
paper was important but at that time I did not understand the paper well enough to
make any headway. One morning in Madras, a couple of years later, my collaborator
Shankar asked a question about the second virial coefficient in connection with Haldane’s
paper which he was reading. Shankar also explained the basic idea of the paper. We
then went on to relate the statistics parameter to the second virial coefficient? and later
were able to show that the well-known Calogero-Sutherland model of interacting particles
encodes the generalized Pauli principle as discussed by Haldane3. In fact, we called this
generalized statistics ” Exclusion Statistics” as opposed to Exchange Statistics (as in the
case of anyons), a name that has now stuck. Rajatda and Diptiman Sen, in the mean
time, also looked at exclusion statistics from the semiclassical point of view and arrived
at similar conclusions. They wrote a paper in PRL showing again the connection between
the generalized Pauli principle and the Calogero-Sutherland model [59]. I consider this
paper as one of the most beautiful papers on this subject.

Together with Matthias and Jimmy, we also made our entry into fields like periodic
orbit theory and chaos, and also a new class of exactly solvable models in dimensions more
than one. Matthias will say more on the POT. It is a collaboration that is continuing
even to this day.

Rajatda has interest in sports, he is an avid follower of the tennis scene. His passionate
interest in bridge is well known to all his friends. During the initial days he tried to induce
me into playing bridge when he desperately needed a partner. He took me for one of those
games after I became familiar with rules. I got so rattled after this game, what with all
those raised voices, that I gave up playing bridge at least at this level. He however
introduced me in to the charms of having a glass of Scotch Whisky in the evening before
dinner. This has endured all these years. I enjoy a shot of Scotch in the evening even
today (depending on the availability).

Looking back and surveying all these years of being with Rajatda (and also with
Matthias who was there in most of these endeavours), one thing stands out. He taught
every one of us to have fun, whether it is physics or cooking or gardening or even just
having a shot at sunset. Many of his other visitors also gradually became a part of this
fun-loving enterprise. Together he and Manjudi provided a home away from home for
many of us.

I would like to use this opportunity to thank all the members of the Bhaduri family for
being so supportive. I thank Hema for recollecting many of her own moments of joy with
the Bhaduris’ and help in preparing this personal recollection of our years with Rajatda
and family.

M. V. N. Murthy

The Institute of Mathematical Sciences
Chennai 600 113, India
murthy@imsc.ernet.in

!F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991)
2M. V. N. Murthy and R. Shankar, Phys. Rev. Lett. 72, 3629 (1994)
3M. V. N. Murthy and R. Shankar, Phys. Rev. Lett. 73, 3331 (1994)
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I met Rajatda for the first time in 1986 at Bhubaneswar where he was participating in
a symposium on “Current Trends in Physics” on the occasion of the completion of the
decade of our institute (IOP). He was obviously the star of the meeting. I spoke in that
meeting on the work on charged vortices which Samir Paul and I had just done.! Besides,
I had just given a course of lectures on topological aspects of quantum field theory and
chiral anomalies. Rajatda invited me to visit McMaster and give a set of lectures on the
same topic in 1987. When I gave those lectures at McMaster, I was immediately struck
by the fact that Rajatda took the lectures very seriously and asked me very probing
questions, and I must say that my understanding of the subject became much better
because of these discussions. Little did I realize that within few months Rajatda would
master many of these intricate things and become an expert. The proof of that came
when his remarkable book [2] soon came out. As far as [ am aware of, this is the first
book on modern nuclear physics. He also wrote several interesting papers using these
ideas. Particular mention may be made of his work on bosonization and a generalized
Thirring model [41].

Our collaboration really started after Rajatda and Murthy visited IOP for a month
in early 1989. Coming from rather different backgrounds, I was somewhat apprehensive
if we can talk on the same plane and find some common problem of interest. However,
soon I found that Rajatda is a true theoretical physicist, an allrounder with a remarkable
breadth of knowledge in several areas of physics. The first work that we did together
was only possible because of Rajatda’s vast knowledge of statistical mechanics and his
ability to correlate ideas from one field to another. In particular, using Wigner-Kirkwood
expansion we showed [42] that the entire contribution to the Witten index comes from
one loop (i.e., the lowest non vanishing term in the A-expansion) and that all terms to
at least the next four orders in 7 vanish. I have a gut feeling that this must be true to
all orders, but I do not know how to prove it. I also believe that there must be a formal
proof that the Witten index must get a contribution from only one loop.

In August 1989 I visited Orsay and came across an interesting paper by Comtet and
Ouvry,2 who obtained a connection between the second virial coefficient a; of a non-
interacting anyon gas and chiral anomaly in 1 + 1 dimensions. Now it is well known that
chiral anomaly gets contributions from only one-loop diagrams, and two and higher loops
do not contribute to it. Hence I felt that a, must also be only one-loop. I must admit that
it was a pure hunch and I had absolutely no idea at that time as to how to go about seeing
if this is true or not. I mentioned my hunch to Rajatda. But this was the time before e-
mail became order of the day, and so I lost contact with Rajatda. Next summer, Rajatda
arranged my visit to McMaster as a Hooker Professor. As he met me at the airport, first
thing that he told me was that he and Rajeev (Bhalerao) have already set up the formalism
to study the virial coefficients of an ideal anyon gas in semiclassical approximation and
that the initial indication was that indeed the semiclassical approximation could be exact
for ay and that now they were trying to compute the third virial coefficient a3 of the ideal
anyon gas. I was absolutely amazed. But I should not have, because Rajatda has this
uncanny ability to pick up the right hunch and, most importantly, he knows how to set up

1S. K. Paul and A. Khare, Phys. Lett. 174 B, 420 (1986)
2A. Comtet and S. Ouvry, Phys. Lett. 225 B, 272 (1989)
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the formalism, do hard calculations and go much beyond trivial guesswork. Besides, he is
very ambitious. I probably would have been happy just studying as in the semiclassical
approximation but he went much further and had already thought about the higher virial
coefficients!

Over the last ten years, I have seen this trait so many times. During the two months
that I was there, we convinced ourselves that indeed the semiclassical approximation is
exact for ay but we could not make much progress about a3 because while we knew how
to isolate symmetric and antisymmetric contributions, we did not know how to isolate the
mixed-symmetry contributions in the three particle case. In fact, so far as I am aware of,
even now no one knows how to do it. I again lost contact with Rajatda, but little did I
realize that he was not the person to give up easily. He has also that uncanny ability to
make other people interested in what he is doing. Soon I found that Murthy and Jimmy
had joined in and they were able to calculate a3 numerically in Boltzmann basis and
obtain an interesting relation between a3 and ay in that basis [43]. There is no doubt that
Rajatda was the leader of the collaboration and the whole thing was revolving around
him. Of course, by now this has happened so many times but, it was a new experience
for me at that time.

Rajatda visited me in July-August 1990 and we deliberated about various issues re-
garding anyons. We discussed about how the spectrum of two anyons can be computed in
several potentials. In particular, we talked about the spectrum in an attractive Coulomb
field. But, of course, we realized that this is an unphysical situation as it will imply that
these are not identical anyons. The discussion probably ended there. But Rajatda, having
the knack to realize what is physical, interesting and doable, had come to the conclusion
that the thing to do was to consider the scattering of two identical charged anyons (and
hence experiencing a repulsive Coulomb potential ~ 1/r). What he had in mind was
essentially a three-dimensional system confined in a plane, as in the quantum Hall effect.
As usual, he was able to create interest in this problem in Jimmy and MK (Srivastava)
and they found elegant closed expression for Mott scattering of anyons. We showed that
there is a marked asymmetry in the differential scattering cross-section between forward
and backward angles [47].

I spent May-June of 1991 at Orsay where John McCabe and I looked at the nature
of the three-anyon ground state in an oscillator potential by using perturbation theory
around the three-fermion ground state. To our great surprise we found that there is a
crossing of levels in the ground state.® It was quite a mysterious result and I communicated
it to Rajatda by e-mail. To my great amazement he told me that they, too, had obtained
the same result but in an entirely different way [44]. They had numerically obtained
the three-anyon spectrum and found such crossings not only in the ground but even in
the excited states. This was yet another proof that once Rajatda examines something, he
studies it in great detail and has the knack to go for the key issues. Rajatda was one of the
first to realize that the understanding of a3 for an ideal anyon gas was crucial as it contains
nontrivial information about braiding effects. So he immediately took up its computation
[48] using perturbation theory around the three-fermion state. This is another trait of
Rajatda. When important issues are involved, he is not afraid to go for big numerical
computations. Subsequently, when he realized that only the nonlinear states contribute
to ag and that I knew how to isolate the linear states from the nonlinear states using the

3A. Khare and J. McCabe, Phys. Lett. 269 B, 330 (1991)
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hyperspherical basis, he convinced us about the importance of the accurate computation
of as using only the nonlinear states. There is no doubt that during these three years
Rajatda has made significant contributions towards our understanding of anyons.

Most of us usually have a single-track mind. While we are working in an area we
usually close our eyes to other areas which could be connected to it. But not Rajatda!
In 1993 while I was visiting him, he one day suggested that we should study Calogero-
Sutherland type models because they seem to be connected to anyons. At that time this
connection was unknown, but he has this intuitive way of seeing it before others. By then I
knew Rajatda quite well and took his suggestion seriously. So I decided to read Calogero’s
classic papers of 1969 and 1971 and I am really grateful to Rajatda for his suggestion. It
is only then that I realized the richness of these models, and in the last seven years I have
been able to contribute a bit to this area. Coming back to McMaster in 1993, I carefully
read Calogero’s paper where he has obtained the exact solution of a three-body problem
on a line with an inverse-square interaction.* I have had several discussions with Rajatda
during this time and through these discussions it soon became clear that the key idea of
Calogero was to use the Jacobi coordinates, remove the centre of mass and then show that
the remaining problem corresponds to that of one particle in two dimensions, experiencing
a noncentral but separable potential. We also realized that the Schrodinger problems so
obtained in p and ¢ variables are examples of shape-invariant, exactly solvable problems in
one dimension. It was then clear to us that one can now discover several new three-body
problems in one dimension corresponding to either Coulomb or oscillator problems in the
p variable and any of the known seven shape-invariant potentials in the ¢ variable [56].
We also showed in this paper that the equal mass three-body problem with the potential

V= ol Z(acz — xj)2 — Mz — x9)(z2 — x3) (23 — 1), (1)

1<j

is an example of a classically chaotic motion, since after transforming to polar coordinates
the potential is the famous Hénon-Heiles potential.

During this period we also realized that one can considerably enlarge the list of an-
alytically solvable problems in quantum mechanics. In particular, we showed that those
noncentral potentials for which the Schrodinger equation is separable are analytically
solvable provided the separated problem for each of the coordinates belong to the class
of exactly solvable one-dimensional problems [57]. As an illustration, we gave a list of
such problems in spherical polar coordinates in both two and three dimensions, while the
generalization to other coordinate systems was pretty obvious. Rajatda suggested that
we write up this work for American Journal of Physics since it should be of interest even
to graduate students. He also emphasized that we should write the paper in such a way
that an average graduate student should be able to appreciate the key ideas and also
should be able to work out the main steps. I have not seen many people who worry so
much about readers, specially graduate students, while writing a paper.

In July-August 93 Rajatda visited us and gave an inspiring talk about some work which
he had done with Murthy and Date (if my memory serves me right) about Riemann zeta
function ((s). I was really impressed by his talk as well as by the fact that he can work in

4F. Calogero, J. Math. Phys. 10, 2191 (1969)
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so many different areas and on so many different concepts. Little did I realize then that
next year I would be working with him on this topic. When I visited him in May-June 94,
I found that he was still interested in the ¢ function and since I, too, was eager to learn a
bit about the celebrated zeta function, we started talking about the various issues. I must
say that this was one of our most enjoyable collaborations. Here we were collaborating
in an area in which neither of us was an expert, even though Rajatda’s knowledge was
obviously much more than mine. It was sheer fun trying out various ideas. Once again
Rajatda demonstrated his knack for smelling key issues. He requested Jimmy to make
a plot of real vs. imaginary part of ((s = o + it) for several different values of ¢ in the
cases 0 = 1/2,0.6, and 1. As soon as we saw the plots at o = 1/2, their similarity to the
resonant quantum scattering amplitude was immediately clear to us. Using this analogy
we were able to derive an approximate quantization condition for the location of the zeros
of {(s) at o = 1/2. This is what Rajatda was after for the last several months. In this
collaboration I had another experience of Rajatda’s ambitious attitude. He wanted to
look for a potential whose density of states will be related to the smooth part of {(s) at
o = 1/2. It is only because of his persistence that we tried it and eventually showed that
the corresponding potential is the inverted oscillator potential [60]. We were quite happy
when several months later we saw a paper by Berry and Keating about the ¢ function,
and the model Hamiltonian suggested by them was related to the inverted oscillator by a
canonical transformation.

After I went back to Bhubaneswar, I more or less stopped thinking about this problem
— but not Rajatda! He was not satisfied with whatever we had done. He wanted to
understand as to what happens to the memories of these zeros as o moves away from 1/2.
As usual, he was able to interest Steffi and Ed in these issues and started working with
them. When I went back to McMaster in May-June 95, I found that a lot of progress had
been made in understanding these issues. I then joined Ed and Rajatda; Steffi had already
left McMaster (here is one more collaborator of mine whom I have never met!). I must
confess that my contribution in this collaboration was minimal while as usual Rajatda
was the key person. I particularly remember learning from him about the Gutzwiller trace
formula. It was fun connecting the trace formula for ¢ > 1 to the one generated by a
one-dimensional harmonic oscillator in one direction along with an inverted oscillator in
the transverse direction and then to show that the Gutzwiller trace formula is exact for
this system [67]. By the time this work was over, Rajatda had become an expert in this
area and the proof of that is the excellent book that he and Matthias have written about
semiclassical physics [3].

My latest collaboration with Rajatda started during his visit to Bhubaneswar in late
1995. Around that time, he along with Murthy and Diptiman had studied an N-body
problem in two dimensions with both two- and three-body interactions. In particular,
they obtained the exact N-boson ground state as well as some excited states and showed
that all of them have novel correlations of the form

Xij = Ty — TjYi (2)

built into them. The spectrum obtained by them was linear in the coupling parameter. So
all of us were curious to know if the entire spectrum is linear in the coupling parameter.
Rajatda has this knack of separating the essential from the inessential and posing the key
issues. During our discussion, it became clear that the answer to the question is not easy
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unless one can actually solve the two- or three-body problem. Obviously, the simplest
one is the two-body problem. But soon we realized that because of the lack of translation
invariance, even this problem is not easy to solve. However, after a lot of discussion we
were able to show that the Schrodinger equation for the two-body problem can be cast
in terms of the Huen equation. Rajatda then left for Chennai. As usual he was able to
interest Jimmy, Murthy and Diptiman in this problem and we were able to show that in
general even the two-body spectrum is not linear in the coupling parameter [65].

I have known Rajatda for more than 13 years. The thing that I admire very much is
the importance that he gives to teaching. He has great respect for academics and in these
days of liberalization he is one person who is very appreciative of those kids who are still
opting for academics as their career. By now he has become a friend, elder brother and
a family member. Not only me but Pushpa, Apu and Anu are always eagerly looking
forward to his visits. He is a very warm-hearted person. He is passionate not only for
physics but even for cooking, gardening and of course for bridge. I have played with him
both as a partner and as an opponent and we have even played in a tournament together
and I have survived his onslaught!

I must add here that any description of Rajatda will be incomplete unless one also
mentions Manjudi and the family. Visit to him automatically means visit to the family
and I know as a fact that all his visitors have been made to feel as members of the Bhaduri
family.

Rajatda is one of the very rare persons who have a passion for physics and who
consider it as a privilege to be a theoretical physicist. I have no doubt that retirement or
no retirement, Rajatda will continue to do physics all his life. I wish him a good afternoon
and look forward to a vigorous collaboration with him.

Avinash Khare

Institute of Physics
Sachivalaya Marg
Bhubaneswar 751005, India
khare@iopb.res.in
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16 SHELL STRUCTURE AND CLASSICAL ORBITS
IN MESOSCOPIC SYSTEMS

When I started my Ph.D. program with Rajatda, he was more and more interested in the
close connection between classical periodic orbits and quantum interference phenomena.
He then got this fascinating idea concerning a cranked two-dimensional harmonic oscillator
[54], and together with Shuxi Li and Jim Waddington, we had a lot of fun with it. When
plotted as a function of cranking frequency, the spectrum of this system beyond the
Landau level limit exhibits not only the Farey fan pattern, but also a sequence of shell
gaps that strikingly resembles the Haldane hierarchy in the fractional quantum Hall effect
(FQHE). Rajatda’s original idea was to explain the FQHE in this mean field picture and
we made several attempts in this direction [53]. We did not quite succeed to establish the
relation between this model and the FQHE, but the shell structure beyond the Landau
levels and its resemblance to the the Haldane hierarchy is very intriguing, and I learned
a lot during this work. After all, this was my first encounter with Rajatda’s insight,
curiosity, strong drive and enthusiasm to find and attack a new problem. In fact, he
was deeply in love with this problem, and whenever we found a promising result as we
proceeded, he sometimes got too excited so that Jim had to “beat him down”. I also
remember Rajatda telling us, after some unsuccessful trials, that it was like a crush on a
girl he had when he was a school boy — he knew it would not work out and he tried to
keep the idea out of his mind, but the thought kept coming back! In this paper, I would
like to summarize this work [54] and then talk a bit about another work that followed.

We study the spectrum of a particle in a rotating two-dimensional harmonic oscillator,
whose Hamiltonian is given by

1 1
H = m(pi‘i‘p;)‘i‘§MQ2($2+y2)+w($Py—ypm)- (1)
Here 2 is the oscillator frequency and w is the cranking frequency about the negative
z-axis. This problem is analytically solvable, and the eigenvalues can be written as

En =20+ l| +1)AQ + lhw, n,=0,1,2,..., 1=0,+1,+2,...., (2

where n, and [ are the nodal and angular quantum numbers, respectively. In Fig. 1 the
pattern of the energy levels (2) as a function of w is shown for 0 < w < 2. We define

b=(w-0Q), 1/:%, (3)

and plot the levels as a function of the dimensionless quantity v; for —1/2 < v <1/2in
Fig. 1. As w increases from zero, it breaks the original symmetry of the isotropic oscillator
and lifts the degeneracy of the energy levels. It then gives rise to a series of shell gaps,
each set of gaps concurring with the formation of classical periodic orbits. As we can
see clearly in Fig. 1, the quantum gaps that are even larger than the original ones are
generated, when w = ). They are equivalent to the Landau levels for a charged particle
in a uniform magnetic field. Writing the charge as e = —|e| and taking the symmetric
gauge, (1) with w = Q = w,/2 is equivalent to the Hamiltonian for such a particle, where
we = |e|B/Mec is the cyclotron frequency. As is clear from this figure, the collapsing
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single-particle states in the lowest Landau level have all aligned (but different) angular
momenta, and originate from different shells of the harmonic oscillator.
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Figure 1:  The energy spectrum (2) of a cranked
two-dimensional harmonic oscillator, as a function of
v defined in (3). The formation of the Landau levels
can be seen clearly at v = 0.
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Figure 2: The same spectrum as Fig. 1, in the range
—1/2 < v < 0 for higher excitation energies.

We illustrate in Fig. 2 the shell gaps for —1/2 < v < 0 for higher energies. The
quantum gaps are formed when w/€Q is a rational number, a fact that links these gaps
to closed classical trajectories. This may be seen easily in the solutions of the classical
equations of motion. Using the variable z = x+1y, the equations of motion can be written
compactly as

= (w?— 0z + 2iws?. (4)
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The first term on the right is an attractive harmonic force for w < €2, but becomes
repulsive beyond the Landau level limit. The general solution of (4) is

y = Aei(w—Q)t +B€i(w+9)t, (5)

where A and B are constants. The normal mode frequencies are |2 — w| and (2 + w),
and a periodic orbit is obtained when the ratio of these frequencies is a rational fraction.
Some of these periodic orbits are shown in
Fig. 3 for various values of v. When w = (2, y ‘
the solutions of (4) are given by circles in
the xy plane with arbitrary centres. Apart
from this special case, the most prominent B <( N
gaps occur in Figs. 1 and 2 for the sim-
plest fractions. For example, the large gaps
at v = £1/3 correspond to the situation 0 x o X
when one normal mode frequency is twice
the other.
Now we study a series of new quantum gaps
that are generated when w > €, i.e., v > 0. 0 -0 «
There are intriguing aspects in the level
structure, particularly regarding the lifting
of the degeneracy of the Landau levels. For (; - g -
convenience, let us study the states converg-
ing at the energy of the lowest Landau level, Figure 3: The classical periodic orbits of
E = hS). At this energy, at v = 0, the zero a particle obeying (5) for various rational
. values of v.

node states [n, = 0; see Eq. (2)] with the
largest negative angular momentum values from each shell converge. The resulting de-
generacy per unit area is found to be gy = 2MQ/h, which equals eB/hc if Q = w,/2.

Now let us proceed to examine, in Fig. 1, the level degeneracies for v > 0. The
repeating pattern in this region is known as a Farey fan,! and has been studied in the
context of number theory and continued fractions. At the energy E = h{2, inspection
of the level at v = 1/m (m an integer > 1) reveals that the number of converging
single-particle states is exactly a fraction 1/m of the Landau level. For example, the
successive harmonic oscillator states meeting at v = 1/3 at E = h{2 have angular momenta
[l =0,-3,—6, etc. in units of & (see Fig. 4). Thus, for every triplet of adjacent states
in the lowest Landau level, e.g., (0, —1,—2), there is one (I = 0 in this case) at v = 1/3.
Similarly, at ©/22 = 1/5, the degeneracy/area is 19/5. The collapsed single-particle
states in a shell at v = 1/m are each from a separate Landau level and have increasing
number of nodes. For example, at v = 1/5, the [ = 0 state has no node, the next state
with [ = —5 has one node, the [ = —10 state has two nodes, and so on.

We may term the condensed levels at ¥ = 1/m as “mothers”, since these gaps rise to
a succession of “daughters” as seen in Fig. 4. One state from each shell of the v = 1/3
mother converges at E = K, constituting the daughter at 2/5, just as the mother herself
was formed from the collapse of the states from each Landau level. The Landau level,
in turn, was formed by the collapse of the states from the separate oscillator shells. The
single-particle states converging at the daughters have different nodal structures than the

y I
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M. D. Mcllroy, Proc. Symp. Appl. Math. 46, 105 (1992) (ed. by S. A. Burr); J. C. Lagarias, ibid., 35
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A, / hQ

NN

Figure 4: The “mother-daughter” sequence of degenerate
levels. One state from each Landau level converges at v =
1/3 to form a mother. Similarly, one state from each shell at
1/3 converges at 2/5. Only a few converging lines are shown
for clarity. In the triangle abf, the vertical lines ab and cd
show the gaps at v = 1/3 and 2/5 respectively.

mothers. For example, consider the daughters at v = 2/5 and 3/7 at E = hf) that belong
to the mother at » = 1/3. From (2), all the converging states at this energy obey the
equation

2n, + [I]) AQ + lhw = 0. (6)

It immediately follows that the converging states at v = 2/5 have n, = 2 for [ = —5,
n, = 4 for [ = —10, etc. Similarly, for v = 3/7, n, =3 for l = -7, n, = 6 for [ = —14,
etc. A similar construction could be made with even-denominator mothers, but then the
daughters have alternately even and odd denominators. The complexity of the structure
in the quantum states is reflected in the classical periodic orbits also, some of which are
shown in Fig. 3. From this figure, note that the number of loops in the orbit is determined
by the denominator ¢ in v = p/q. For example, both v = 1/5 and v = 2/5 have periodic
orbits with five loops, but the v = 2/5 orbit has a more complicated structure. The
denominator ¢ of v = p/q also determines the magnitude of the quantum gap, as is
apparent from Fig. 4. Denoting this gap by A,, we see that at v = p/q,

hw,
A, = , 7
p (7)

where hw, = 2Ahf) is the gap at the Landau levels.

Finally, the sequence of the gaps generated by this simple dynamical model for v > 0
are the same, for the odd denominators, as the Haldane hierarchy? in the fractional

2F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983)



Shell structure and classical orbits in mesoscopic systems 65

quantum Hall effect.> The hole-state sequences for the odd denominators in this hierarchy,
e.g., (3,2, %, ...) are generated in our model by the convergence of lines from the lower
side of the A, = hQ line (see Fig. 4). The FQHE states, however, have a very different
structure than the ones obtained in this model. In FQHE, the single-particle states of the
lowest Landau level get thoroughly mixed by the Coulomb interaction between electrons,
and have a highly correlated wave function of an incompressible quantum fluid.* There
is little mixing of states from different Landau levels in such a state. By contrast, the
wave function generated by our model has thorough inter-Landau level mixing and has
no two-body correlations. Nevertheless, it is interesting that a sequence of quantum
gaps resembling the Haldane ones may be produced from a single-particle model that is
integrable.

Following this work, studying changes in the shell structure of a finite fermion system
under perturbation and understanding them in terms of classical trajectories became the
theme of my thesis. Stimulated by the fact that a single magnetic flux line added in the
Hénon-Heiles potential drastically changes its supershell structure [61], Rajatda raised
the question as to what happens to the electronic supershells of simple metal clusters® if a
uniform magnetic field is applied. Using a spherical cavity as the mean field, the beating
pattern of the shell structure of this system can be understood as due to an interference
among the shortest periodic orbits of electrons.® This question was very interesting, since
the classical dynamics of electrons are changed dramatically in a magnetic field. As it
turned out, contrary to our anticipation, there is little perceptible change in the shell
structure for realistic field strengths. As the field is increased yet further, however, the
supershells get destroyed and a series of new beating patterns emerge.” Up to some field
strength, this can be understood in terms of linear perturbation by the field, so that
the field has similar effects as cranking. Semiclassically, the robustness of the original
supershell structure and the formation of the new supershells can be explained by a trace
formula for broken symmetry.® In Fig. 5 we show some examples of the oscillating part of
the density of states (smoothed by a Gaussian of width 7); for various values of the scaled

field strength x = (R/ly)?, where R is the cavity radius and ly = y/hc/eB the magnetic
length. The quantum and semiclassical results are plotted in solid and dotted curves,
respectively. At k = 2 we see supershell structure which is different from the original one
and the excellent agreement between the quantum and semiclassical results, while as
increases, the semiclassical result starts deviating at lower energies. The arrows in the
figure indicate a “confidence limit” as the value of kR, above which the cyclotron radius
is larger than 5R.

The most important thing I have learned from Rajatda during my Ph.D. years is to be
open-minded and brave to tackle new kinds of physics and to look for common physical
aspects among different subjects. Another thing he taught me is that eating (raw) green
chili and drinking Scotch are important for physics and great ideas (as he has proved him-

3D. C. Tsui, H. L. Stérmer and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982); R. R. Du, H. L.
Stérmer, D. C. Tsui, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 70, 2944 (1993)

“R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

SW. A. de Heer, Rev. Mod. Phys. 65, 611 (1993); M. Brack, ibid., 677
6R. Balian and C. Bloch, Ann. Phys. (N.Y.) 69, 76 (1972)

"K. Tanaka, S. C. Creagh, and M. Brack, Phys. Rev. B 53, 16050 (1996)
8S. C. Creagh, Ann. Phys. (N.Y.) 248, 60 (1996)
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Figure 5:
(dotted curves) oscillating part of the density of states, dg,(E), as a function
of kR = VE for (a) K = 2.0, (b) & = 5.0, (c) & = 10.0. The smoothing
width v is 0.4VE.
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Well, T must admit that I have not worked very hard on these things yet, but I
am planning to start trying them soon. He also introduced me to real Indian cooking,
and along with Manjudi, he taught me how to make various kinds of curry dishes (and I
always “enjoyed” cutting onions). Moreover, I am grateful to Rajatda, Manjudi, Ronnie,

Ranju, Tukun (Mallika), and Sharmila for giving me nice times at their house.

I wish Rajatda and his family all the best, and I am sure that he will enjoy even more

and more physics from now on.

Kaori Tanaka
Department of Physics

University of Alberta

Edmonton, Alberta
Canada T6G 2J1
ktanaka@phys.ualberta.ca
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While I am writing my contribution to Rajatda’s “Birthday Book”, he is on his way home
to Canada — probably somewhere above Greenland (and I bet, in-flight working hard on
bosons!). How happy I was that I could convince him to visit me so far north in central
Finland. We spent a wonderful week together, and I already miss his company.

When both Andreas and I picked him up from the airport, even after more than 24h
of travel he was all fresh and full of energy. We went home for dinner and naturally ended
up discussing physics until long after midnight - Rajatda didn’t show any signs of jet-lag
after the long travel, but his well-known appetite for new adventures in physics. The first
day in Jyviskyld, Rajatda suggested to cook chicken curry for us (see the back cover),
and I realized that everything was very well-planned: he had a big bag with spices in his
suitcase which he brought from India only a week before he came to Finland. The curry
was wonderful, and the Finnish Sauna later on provided the right tropical climate. In
the following days we soon found out that what we both liked best after work was to go
home in the evenings, have a Scotch and then cook various Indian meals with Finnish
ingredients. (Of course I did cut the onions. But I soon realized that the biggest advantage
of not being a Ph.D. student any longer was that I didn’t have to.') Over a Scotch or
sometimes a bottle of wine, we shared many thoughts.

My first impression of Rajatda goes back to 1990, when I was a student at the Uni-
versity of Regensburg and following a course on nuclear physics, held by Matthias. The
syllabus included parts of the book by Preston and Bhaduri, as well as Bohr and Mot-
telson’s “Nuclear Structure”. I still remember how much I studied those books. I could
never have imagined at that time that I would later on be so fortunate to collaborate
with Rajatda, Matthias, and Ben. After this term, I began my “Masters” and joined
Matthias’ group. Not only that he had impressed me in his lectures, I also knew him as
a brilliant pianist. From sharing the fun in physics (and music), friendship originated,
and the same happened later in my relation to Rajatda. Towards the end of my graduate
studies, Matthias decided to send me to Rajatda at McMaster for a couple of weeks,
before I would finish writing my thesis. How excited I was: I should go and work with
the man whose book I had studied so thoroughly. Above all, it was my first trip to the
American continent. Rajatda received me at the airport, and we immediately got along
very well. I still remember that very first evening: he took me to his home, and for the
first time I had Indian chicken curry.

Rajatda excitedly told me about the Riemann zeta function which he had been working
on with Avinash and Jimmy [60]. The zeta function, originally introduced by Euler,
knows all about the prime numbers, and is written in the simple form of a Dirichlet
series, ((t) = Y32, 1/k" with integer k and real ¢ > 1, or equivalently, as a product
¢(t) = Ilpep 1/(1 — p7") over the primes p = 2,3,5,7,... € P. In his treatise “Uber die
Anzahl der Primzahlen unter einer gegebenen Grofie”,? which was a milestone in number
theory, Riemann analytically continued this function to the complex plane.®> Defining
s = o +it with real o and ¢, the Riemann zeta function ((s) has “trivial” zeros at negative

Lef. Matthias’, Jonny’s and Kaori’s contributions

2B. Riemann: Gesammelte Werke (Teubner, Leipzig, 1892; reprinted by Dover Books, New York,
1953)
3H. M. Edwards: Riemann’s zeta function (Academic Press, New York, 1974)
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integers for o0 < 0 and is non-zero for o > 1. Riemann conjectured that inside a “critical
strip” 0 < R(s) < 1 all non-trivial complex zeros can be found on the half-line o = 1/2,
and that there are infinitely many of them. The latter part of the conjecture was proved
by Hardy* already in 1914, while for its first part, there is only numerical evidence and a
proof is still lacking. Along the line o = 1/2, the phase angle 6, (t) of the zeta function for
a given o, defined by the polar form ((o + it) =| {(s) | exp(—if,(t)) along the imaginary
axis ¢ for fixed o = 1/2, is a smooth function unless ((s) changes sign: it then shows a
discontinuous jump by 7. Off the 1/2 axis, the zeta function memorizes its zeros, but this
memory is fading away with increasing distance to the 1/2 axis. Like Fermat’s theorem
(to which it actually is connected), the Riemann conjecture is one of the holy grails for
a mathematician. Armed with much physical insight, Rajatda, Avinash and Jimmy did
not hesitate to challenge the “queen of number theory”: they could link the smooth phase
of the zeta function to the quantum scattering phase shift of a one-dimensional inverted
harmonic oscillator [60]. Rajat passed his excitement to me, and I soon found myself
pondering about the prime numbers and getting lost in unknown territory. It can be
really dangerous when physicists catch the math bug: we were so much infected that we
did not even hesitate to do thermodynamics with the Riemann zeros! But we had lots
of fun and thrill - and, as Rajatda keeps telling me, that is what counts. We started to
examine the phase of ((s) more closely and found that its derivative with respect to ¢
for fixed o > 1/2 is just the Lorentz-smoothed oscillating part dg,(t) = g,(t) — g,(t) of
the density of the Riemann zeros, g(t) = ¥, 6(t — t,,), at the half line: it contains all the
information about the zeros. For 0 = 1/2 and assuming the Riemann conjecture that the
only zeros are at 1/2 + t,,

1df 1 t
———=5gt) =Y §(t—t,) — —1 (—) 1
This discontinuous function gets smoothed by Lorentzians of widths (o — 1/2) as the
derivative of the phase is computed along the imaginary axis at o > 1/2. The Lorentz-
smoothed density is expressed as

0% 1
D N

(2)

with a smooth part

d(t) = % In [%((0 _ %)2 + t2>1/2] . (3)

The density of states of the Riemann zeros was thoroughly examined by Berry® who wrote
it in terms of a (convergent) Gutzwiller trace formula, with one primitive periodic orbit
for each prime number, having a classical action that is proportional to the logarithm of
the prime p € P

1 In

0ge(t) = —=>_ Tp cos(ktlnp). (4)

Thp P ’
(We set i = 1 and identify ¢ with the energy variable.) Far away from the half line, only
the “shortest paths” are important and the contributions of larger primes get severely

4G. H. Hardy, Comptes Rendus CLVIII, 280 (1914)
SM. V. Berry, Proc. Roy. Soc. London Ser. A 400, 229 (1985)
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damped. This is illustrated in Figure 1 below: it shows the derivative of the phase of the
zeta function at ¢ = 2 as an example. On the basis of Eq. 4 one is tempted to speculate
that the zeros s, behave as eigenvalues of a dynamical Hamiltonian.® For very large o,
unstable harmonic motion in one direction, perched on the edge of an inverted harmonic
oscillator in the transverse direction, serves as a caricature of the Riemann zeta function
[67]. The classical motion perpendicular to the saddle has only one isolated, unstable
periodic orbit and its repetitions. Clearly, such a toy model does not correspond to any
dynamical system that could be a candidate for describing the phase of the zeta function
even outside the critical strip. Focusing on the semiclassical density of states and its
asymptotic connection to the Riemann zeta function, however, one notices that for very
large distances from the half line, the curvature of the inverted potential at the saddle is
directly proportional to o.
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Figure 1: Derivative of the phase of the zeta function df,/dt at o = 2, calculated by using
the first 10 primes and k4, = 10 (solid line), and the first 100 primes, kp,q; = 100 (dashed
line).

Rajatda’s basic curiosity and sense of adventure is best described by telling about one
of those days at McMaster, when we went down to the store in the basement of the physics
department and lost our way, ending up in the chemistry section: What wonderful stuff
they had there! We walked around and showed each other the most bizarre glass bulbs,
bottles and tubes. Actually, we got a bit depressed that we were no chemists. What fun
these guys must have in their labs! We silently returned to our desks and continued our
fight with the {-function. Of course, many cooking events accompanied our mathematical
expedition. I remember Ed being very sophisticated: he would always ask his computer
for advice while cooking, having his laptop with all the recipes among a pile of chilies,
garlic and other stuff. The outcome was really hot.

Being back home, instead of my working on my thesis, we decided to write a paper
on our ideas about the Riemann zeros. We submitted it to Physical Review A, very soon
got rejected, and I was very disappointed. Rajatda suggested to submit again to Annals

SM. V. Berry, in Quantum Chaos and Statistical Nuclear Physics, Lecture Notes in Physics 263, ed.
by T. H. Seligman and H. Nishioka (Springer Verlag, Berlin, 1986), p. 1
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of Physics. I, a real pessimist, exclaimed: ‘I bet a bottle we get another reject!” Rajatda
just loved it — he was sure the Scotch was his. And, indeed, it was [67].

When we resubmitted the paper, we realized through discussions with Poul Erik Lin-
delof from NBI in Copenhagen that our mathematical toy actually has its experimental
counterpart in nanostructure physics: the electrostatic potential of a split-gate quantum
point contact in a mesoscopic structure’ has a similar shape than the oscillator saddle po-
tential that we had studied in connection with the Riemann zeta function. Transmission
through such a saddle potential may take place in quantized channels that correspond to
the bound states of the one-dimensional harmonic potential.

It would take several years before we met again (apart from a very short visit of
Rajatda in Regensburg, where he was busy writing his book with Matthias). I was
then as a post-doc at NBI in Copenhagen and had turned away from semiclassics and
periodic orbits to semiconductor quantum structures and their microscopic description.
Many analogies between such finite-size condensed matter systems and nuclei — such
as, for example, shell structure — called for bringing together nuclear and condensed
matter physicists for a workshop at ECT* in Trento. Curious characters full of energy
like Rajatda were exactly what we needed for a successful meeting, and I knew that he
would be all in favour for such an interdisciplinary enterprise. Rajatda, Ben and I stayed
another week after the workshop, in order to collect our ideas and summarize the outcome,
and had a week of exciting discussions and lots of fun. The workshop had drawn some
connections to the physics of Bose-Einstein condensates, which interested both Rajatda
and Ben very much. For me as a green post-doc, everything was very new. The atomic
condensates constitute a new playground for many-body physics. One can even make
them rotate — no wonder that both Ben and Rajat love this new toy. Cooled below a
critical temperature, a large fraction of the atoms of a bosonic gas condenses in the lowest
quantum state as a consequence of quantum statistics.® The wavefunctions can overlap
if at low enough temperature the de Broglie wavelength of the (indistinguishable) atoms
becomes comparable to the average inter-atomic distance. At this critical temperature, the
bosonic atoms form a coherent cloud of atoms with a macroscopic population of the same
lowest quantum state — the Bose-Einstein condensate. As the range of the inter-atomic
forces is much smaller than the de Broglie wavelength of the atoms, interactions can be
modeled by an effective contact interaction Uyé(r—1'), with Uy = 47h*a/m, where a is the
s-wave scattering length. Rajatda had noticed an astounding analogy to his earlier work
with Diptiman Sen [59] on a non-interacting Haldane gas® and speculated that interacting
bosons in quasi two dimensions could be mapped on non-interacting particles obeying
Haldane’s fractional exclusion statistics. We then considered a dilute Bose gas in an oblate
three-dimensional trap and took the quasi two-dimensional limit in which w, = w, < w;,
being well aware of the fact that the delta-function interaction in this effectively two-
dimensional Hamiltonian is not to be regarded as a pseudo-potential from scattering in
two dimensions, but rather as the dimensionally reduced form of a three-dimensional
pseudo-potential. For temperatures above the critical temperature 7, of the interacting
system, there is no condensate and n(r) = ng(r), where nr is the density of particles

"M. Biittiker, Phys. Rev. B 41, 7906 (1990); R. Taboryski, A. Kristensen, C. B. Sgrensen and P. E.
Lindelof, Phys. Rev. B 51, 2282 (1995)

8V. Bagnato, D. E. Pritchard and D. Kleppner, Phys. Rev. A 35, 4354 (1987)
9F.D.M. Haldane, Phys. Rev. Lett. 67, 937 (1991)
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occupying states other than the ground state. For T' < T, one writes n(r) = ng(r)+nr(r),
with the condensate density ng(r). In the Thomas-Fermi approximation,
(0) / d’p/(2mh*)
n(r) =
exp|(p?/2m + mw?r?/2 + (27h° /m)gn(r) — p)B] — 1’

(5)

where 8 = 1/(kgT). The dimensionless coupling constant g of the effective two-dimension-
al interaction is ¢ = av/27 /b, with the oscillator length b, = /% /mw, in z—direction. This

equation, together with the constraint N = [ d?rn(r), can be solved self-consistently to
obtain n(r). Without interaction, g = 0, the condensate density ng is macroscopic below
T. which results in a discontinuity in the chemical potential p at T, (see Fig. 2).

Chemical Potential p [a.u.]

0 1.0 2.0

Temperature T/Te

Figure 2: Chemical potential y versus temperature 7'/T,. for interacting
bosons in a quasi two-dimensional trap at various values of the interaction
strength g, obtained from a selfconsistent solution of the Thomas-Fermi equa-
tions.

Rajatda showed me a paper!® which claimed that for an interacting quasi two-dimen-
sional system there was no selfconsistent solution of the TF equations below a certain
non-zero critical temperature 7,.. He was very upset, as this did not seem to fit together
with the above mentioned “Haldons”, and asked me to repeat the numerics to see what is
going on. It was a sunny Sunday morning in Italy, and I really did not plan to spend the
whole day in the institute. But I knew Rajatda wouldn’t get any peace until the work
was done: Run, rabbit, run, dig that hole, forget the sun ...

For non-zero positive g, the above equations can be solved all the way down to T" = 0.
We finally saw that within the finite-temperature Thomas-Fermi method, there is no strict
phase transition with a repulsive zero-range two-body interaction, no matter how weak
the repulsion of the particles. As the temperature is lowered the chemical potential rises
smoothly, and only at zero temperature does it match the lowest energy level of the trap.

10W. J. Mullin, J. Low Temp. Phys. 110, 167 (1998)
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After we left Italy, we continued our work via the internet — what would we do with-
out it. Trying to demonstrate the mapping of interacting bosons on non-interacting
“Haldons”, I remember night-long searches for a bug in the numerical code. Rajatda was
so sure that he was right, the bug had to be on my side. And of course it was — a simple
factor of two missing at a delicate point. (Later on, when Rajatda visited Jyviskyla, Su-
sanne Viefers joined us and this derivation was done analytically.) We celebrated on the
phone, immediately finished the paper and submitted it to the “Physical Review Lottery”
[70]. This time, however, if we had made another bet, the bottle would have been mine.

Rajatda and I manage to regularly confuse each other but usually, some answer origi-
nates later from it. Rajatda guides me through the wonderland of physics, always drawing
my attention to many beautiful sights along the way, which I otherwise certainly would
have missed. I deeply admire his never-ending curiosity. Rajatda is a truly dynamical
Hamilton-ian: he attacks a new problem that crosses his path with immense intensity and
ingenuity. He then passes his excitement to anyone who is around, and he would always
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