Quantum Gravity I: Canonical General Relativity				WS 20/21
				Dr. N. Bodendorfer
Sheet 9	—	Handout: 11.01.2021		To present: 18.01.2021

Problem 1: Metric compatibility

Show that for a torsion free connection, i.e. $A^{\rho}_{\mu\nu} = A^{\rho}_{\nu\mu}$, the condition

$$D_{\mu}g_{\rho\sigma} = \partial_{\mu}g_{\rho\sigma} - A^{\nu}_{\mu\rho}g_{\nu\sigma} - A^{\nu}_{\mu\sigma}g_{\rho\nu} = 0$$
⁽¹⁾

determines $A^{\rho}_{\mu\nu}$ to be equal to the Christoffel symbols $\Gamma^{\rho}_{\mu\nu}$.

Hint: Sum various $D_{\mu}g_{\rho\sigma} = 0$ with suitably interchanged indices.

Problem 2: Covariant divergence

- **a)** Conclude from $\nabla_{\mu}g_{\rho\sigma} = 0$ that $\nabla_{\mu}(-g) = 0$, where $g = \det g_{\mu\nu}$. Show furthermore that this implies $\partial_{\mu}\sqrt{-g} \sqrt{-g}\Gamma^{\nu}_{\mu\nu} = 0$.
- **b)** Show that $\nabla_{\mu}(\sqrt{-g}v^{\mu}) = \partial_{\mu}(\sqrt{-g}v^{\mu})$ for arbitrary vectors v^{μ} .
- c) Conclude that covariant derivatives can be partially integrated if the integrand has density weight one, i.e. contains one power of $\sqrt{-g}$, and no uncontracted indices.

Problem 3: Properties of the Lie derivative

- a) Show that the Lie derivative is compatible with index contraction
- **b)** Compute the Lie derivative of a density *n* object, such as $(\sqrt{\det g})^n$. What happens if the object has additional tensor indices?
- c) Show that the Lie derivative can be partially integrated if the integrand is a density 1 object with no (uncontracted) tensor indices (as it should be).

please turn the page

Problem 4: Parallel transport on a Sphere

Consider a two-dimensional sphere S^2 parametrized by the coordinates $\theta \in (0, \pi)$ (vertical angle) and $\phi \in (-\pi, \pi)$ (horizontal angle).

a) Calculate the parallel transport of an arbitrary vector along the two curves

$$\gamma_{\theta}(s) = (\theta_0 + s, \phi_0), \quad s \in (a, b)$$

and

$$\gamma_{\phi}(s) = (\theta_0, \phi_0 + s), \quad s \in (a, b).$$

b) Calculate the parallel transport along a closed curve composed of components of γ_{θ} and γ_{ϕ} along the points: $(\pi/2, 0) \rightarrow (\pi/2, \phi^*) \rightarrow (\theta^*, \phi^*) \rightarrow (\theta^*, 0) \rightarrow (\pi/2, 0)$. Compare the parallel transported vector and the initial vector. What happens for an infinitesimal small loop? Compare with the definition of the Riemann tensor.

Problem 5: BONUS: Geodesic equation

Derive the geodesic equation by varying the length functional

$$d(c) = \int_{c} ds := \int_{c} \sqrt{g_{ij} dx^{i} dx^{j}} := \int_{a}^{b} d\lambda \sqrt{g_{ij}(c(\lambda))} \frac{dx^{i}}{d\lambda} \frac{dx^{j}}{d\lambda}$$

along a curve $c : [a, b] \to \mathcal{M}_n$. It is easiest to start with the case where the curve parameter λ measures proper length, so that

$$\sqrt{g_{ij}(c(\lambda))} \frac{dx^i}{d\lambda} \frac{dx^j}{d\lambda} = \text{const}$$

as a function of λ along the desired trajectory. What corrections to the geodesic equation are necessary if λ does not measure proper length?