Problems to Quantum Gravity I: Canonical General Relativity				WS 20/21
				Dr. N. Bodendorfer
Sheet 8		Handout: 21.12.2020		To present: 11.01.2021

Problem 1: Covectors

Derive the transformation law for covector components from the definition $dx^i(\partial_j) = \delta^i_j$ for the dual basis. Conclude that the evaluation $w(v) = w_i v^i$ of a vector v using a covector w is independent on the choice of basis.

Problem 2: Push forward and pull back

Compute the coordinate expression for the pull back of a vector field along a diffeomorphism Φ by using its inverse. Confirm that the evaluation of a vector v using a covector w, w(v), is invariant under pull backs, i.e. $(\Phi_*w)(\Phi_*v) = w(v)$. Show also that $\Phi_*\Phi^* = \Phi^*\Phi_* = \text{Id}.$

Hint: $\delta_j^i = \frac{\partial x^i}{\partial x^j} = \frac{\partial (\Phi^{-1})^i (\Phi(x))}{\partial x^j} = \dots$

Problem 3: Great circles

Show that the shortest path between two points on a sphere is a section of a great circle by solving the geodesic equation in suitable coordinates.

please turn the page

Problem 4: The classical string

Consider an embedding map $X^{\mu}(\tau, \sigma)$ from a two-dimensional surface coordinatised by (τ, σ) into four-dimensional Minkowski spacetime with the sign convention (-, +, +, +). The range of this map is called the world sheet of the classical string. We will leave its domain unspecified for this exercise and neglect boundary terms throughout. We define $\dot{X}^{\mu} := \frac{\partial X^{\mu}}{\partial \tau}$ and $X'^{\mu} := \frac{\partial X^{\mu}}{\partial \sigma}$, as well as $\dot{X}^2 := \dot{X}^{\mu} \dot{X}_{\mu}$, $X'^2 := X'^{\mu} X'_{\mu}$ and $\dot{X} \cdot X' = \dot{X}^{\mu} X'_{\mu}$.

a) Show that the infinitesimal area element of the world sheet in Minkowski spacetime reads

$$dA = \sqrt{(\dot{X} \cdot X')^2 - \dot{X}^2 X'^2} \ d\tau d\sigma, \tag{1}$$

where the sign under the square root is chosen to be consistent with \dot{X} being time-like and X' being spacelike.

b) Perform the Legendre transform of the Nambu-Goto action

$$S_{\rm NG} = -\frac{T}{c} \int dA = -\frac{T}{c} \int d\tau \int d\sigma \sqrt{(\dot{X} \cdot X')^2 - \dot{X}^2 X'^2},\tag{2}$$

and show that two primary constraints arise. The constant T is called the string tension and c is the speed of light.

- c) How can one see directly in the action that two primary constraints should arise?
- d) Compute the total Hamiltonian, the algebra of constraints, and complete the Dirac stability analysis.

Bonus question: Is it possible to arrive at a first order formulation of the classical string analogous to the previous exercise? Perform again the canonical analysis and try to find gauges which simplify the theory.