Problem 1: ADM Poisson brackets in triad variables

Show that

$$
\begin{equation*}
\left\{q_{a b}[E, K](x), P^{c d}[E, K](y)\right\}_{\{K, E\}}=\delta_{(a}^{c} \delta_{b)}^{d} \delta^{(3)}(x, y) \tag{1}
\end{equation*}
$$

i.e. that the Poisson brackets of the ADM variables $q_{a b}, P^{a b}$ are reproduced by the Poisson brackets of the triad variables.

Hint: $0=\left\{\delta_{a}^{b}, f\right\}=\left\{q_{a c} q^{c b}, f\right\}=q_{a c}\left\{q^{c b}, f\right\}+q^{c b}\left\{q_{a c}, f\right\}$ and $\{\operatorname{det} q, f\}=q q^{a b}\left\{q_{a b}, f\right\}$ for arbitrary phase space functions f.

BONUS question: Show that $\left\{P^{a b}[E, K](x), P^{c d}[E, K](y)\right\}_{\{K, E\}}=G_{i j}[\ldots]$.

Problem 2: Hamiltonian constraint

Show that the Hamiltonian constraint (for $\kappa=1$) can be written as

$$
\begin{equation*}
\mathcal{H}[N]=\int_{\Sigma} d^{3} x N\left(\beta^{2} \frac{{ }^{(\beta)} E^{a i(\beta)} E^{b j}}{2 \sqrt{q}} \epsilon^{i j k} F_{a b}^{k}\left({ }^{(\beta)} A\right)-\frac{\left(1+\beta^{2}\right)}{\sqrt{q}}{ }^{(\beta)} K_{[a}^{i}{ }^{(\beta)} K_{b]}^{j(\beta)} E^{a i(\beta)} E^{b j}\right) \tag{2}
\end{equation*}
$$

up to terms proportional to the Gauß law. Here, ${ }^{(\beta)} E_{i}^{a}=\frac{1}{\beta} E_{i}^{a},{ }^{(\beta)} K_{a}^{i}=\beta K_{a}^{i}$, and ${ }^{(\beta)} A_{a}^{i}=\Gamma_{a}^{i}+\beta K_{a}^{i}$.

Hints: Remember that $\Gamma_{a i j}=-\epsilon_{i j k} \Gamma_{a}^{k}$, for which the defining equation reads $\partial_{a} e_{b}^{i}-$ $\Gamma_{a b}^{c} e_{c}^{i}+\Gamma_{a}{ }^{i} k_{k}^{k}=0$. We define the field strengths $R(\Gamma)_{a b i j}=2 \partial_{[a} \Gamma_{b] i j}+\left[\Gamma_{a}, \Gamma_{b}\right]_{i j}$ and $R_{a b i}=2 \partial_{[a} \Gamma_{b]}^{i}+\epsilon^{i j k} \Gamma_{a}^{j} \Gamma_{b}^{k}$. What is the relation between $R_{a b i}$ and $R_{a b i j}$? Show that $R_{a b i j} e_{c}^{i} j_{d}^{j}=R_{a b c d}$, where $R_{a b c d}$ is the Riemann tensor defined with the convention $\left[\nabla_{a}, \nabla_{b}\right] u_{c}=R_{a b c}{ }^{d} u_{d}$. Relate $R_{a b}^{i}$ to $F_{a b}^{i}$.
please turn the page

Problem 3: Gauß law in connection variables

Show that $-\int d^{3} x \Lambda_{k} \epsilon^{i j k} E_{[i}^{a} K_{a \mid j]}=\int d^{3} x \Lambda^{k} D_{a} E_{k}^{a}$.
Hint: This exercise suggests a special form of the covariant divergence of densitized vectors: $\nabla_{a}\left(\sqrt{q} v^{a}\right)=$?

Problem 4: BONUS: Canonical connection variables

To show that A_{a}^{i}, E_{j}^{b} is a canonical pair, it was left to show that

$$
\begin{equation*}
\left\{\Gamma_{a}^{i}(x), K_{b}^{j}(y)\right\}+\left\{K_{a}^{i}(x), \Gamma_{b}^{j}(y)\right\}=0 . \tag{3}
\end{equation*}
$$

This can be done either by brute force or by following the hints below. Boundary terms can be neglected throughout.
a) Show that the equation would be satisfied if Γ_{a}^{i} has a generating potential, i.e. $\Gamma_{a}^{i}(x)=\frac{\delta F}{\delta E_{i}^{a}(x)}$
b) Construct a candidate for F (The simplest possible will do.)
c) Show that the candidate for F is indeed a potential for Γ_{a}^{i}.

Special bonus question: What goes wrong if we try to construct similar variables in higher dimensions?

Special bonus question: What happens to the canonical variables at the boundary of the spatial slice if we keep track of all boundary terms?

Special Bonus question: Is there any other useful way to construct canonical connection variables?

