Problem 1: Resolution of singularities in spatially flat, homogeneous and isotropic cosmology
a) Solve the equation

$$
\begin{equation*}
3\left(\frac{\dot{a}}{a}\right)^{2}=\rho \tag{1}
\end{equation*}
$$

for the scale factor $a(t)$, where $\rho=\frac{\text { const }}{a^{3(1+\omega)}}$ and ω is a constant determining the so called equation of state of the cosmological model.
b) Compare the case $\omega=1$ to general relativity coupled to a massless scalar field as discussed in the lecture.
c) Solve the "quantum corrected" equations of motion

$$
\begin{equation*}
3\left(\frac{\dot{a}}{a}\right)^{2}=\rho\left(1-\frac{\rho}{\rho_{\text {crit }}}\right) \tag{2}
\end{equation*}
$$

where $\rho_{\text {crit }}$ is a constant depending on \hbar. Discuss the physical properties of these solutions.

Bonus question: Find a "quantum corrected" Hamiltonian that yields (2).

0.1 Hypersurface deformation algebra

Problem 2: Hypersurface deformation algebra

As in the lecture, we consider the canonical theory of a three-dimensional surface σ with coordinates x^{a} embedded into four-dimensional spacetime with coordinates y^{μ}. For every point in σ, we have the embedding coordinates $y^{\mu}\left(x^{a}\right)$. Covectors on spacetime can be pulled back to the hypersurface as $v_{a}:=v_{\mu} \frac{\partial y^{\mu}}{\partial x^{a}}$. We define non-unit time-like conormal $\tilde{n}_{\mu}=\epsilon_{\mu \nu \rho \sigma} \epsilon^{a b c} \frac{\partial y^{\nu}}{\partial x^{a}} \frac{\partial y^{\rho}}{\partial x^{b}} \frac{\partial y^{\sigma}}{\partial x^{c}}$. The unit time-like conormal is given by $n_{\mu}:=\tilde{n}_{\mu} / \sqrt{-\tilde{n}_{\mu} \tilde{n}^{\mu}}$. We choose the metric signature $(-,+,+,+)$ and coordinates such that $n_{0}<0 \Leftrightarrow n^{0}>0$.

The non-vanishing Poisson brackets read $\left\{y^{\mu}(x), w_{\nu}\left(x^{\prime}\right)\right\}=\delta_{\nu}^{\mu} \delta^{(3)}\left(x, x^{\prime}\right)$.
We define the generators $\mathcal{H}=w_{\perp}:=w_{\mu} n^{\mu}, \quad \mathcal{H}_{a}=w_{\mu} \frac{\partial y^{\mu}}{\partial x^{a}}$.
Show that the Poisson-algebra of hypersurface deformations reads

$$
\begin{align*}
\{\mathcal{H}[M], \mathcal{H}[N]\} & =\mathcal{H}_{a}\left[q^{a b}\left(M \partial_{b} N-N \partial_{b} M\right)\right] \tag{3}\\
\left\{\mathcal{H}[M], \mathcal{H}_{a}\left[N^{a}\right]\right\} & =-\mathcal{H}\left[\mathcal{L}_{N} M\right] \tag{4}\\
\left\{\mathcal{H}_{a}\left[M^{a}\right], \mathcal{H}_{a}\left[N^{a}\right]\right\} & =-\mathcal{H}_{a}\left[\mathcal{L}_{N} M^{a}\right] . \tag{5}
\end{align*}
$$

Hints:

- $\epsilon^{a b c}$ and $\epsilon_{\mu \nu \rho \sigma}$ are both totally antisymmetric. Note that cyclic permutations are only a symmetry of $\epsilon^{a b c!} \epsilon_{\mu \nu \rho \sigma}=-\epsilon_{\nu \rho \sigma \mu}$.
- $\epsilon^{123}=1$ and $\epsilon_{0123}=-1$.
- The above Lie derivatives read:
- Of a scalar M along the vector field $N^{a}: \mathcal{L}_{N} M=N^{a} \partial_{a} M$
- Of a vector field M^{a} along the vector field $N^{b}: \mathcal{L}_{N} M^{a}=N^{b} \partial_{b} M^{a}-M^{b} \partial_{b} N^{a}$
- Show that $\left\{w_{\mu}(x), n^{\nu}\left(x^{\prime}\right)\right\}=\left\{w_{\mu}(x), \tilde{n}^{\rho}\left(x^{\prime}\right)\right\} \frac{1}{\sqrt{-\tilde{n}_{\mu} \tilde{n}^{\mu}}} q_{\rho}{ }^{\nu}, \quad$ with $q_{\rho}{ }^{\nu}:=\delta_{\rho}^{\nu}+n_{\rho} n^{\nu}$ What role does $q_{\rho}{ }^{\nu}$ have?
- Show that $3 \epsilon_{\mu \nu \rho \sigma} \epsilon^{a b c} \frac{\partial y^{\rho}}{\partial x^{b}} \frac{\partial y^{\sigma}}{\partial x^{c}}=\tilde{n}_{\mu} \frac{\partial x^{a}}{\partial y^{\nu}}-\tilde{n}_{\nu} \frac{\partial x^{a}}{\partial y^{\mu}}$
- Drop boundary terms

Bonus question: What changes if we pick the signature $(+,+,+,+)$?

