Dr. N. Bodendorfer

Sheet 11

Handout: 15.01.2019

To present: 21.01.2019

Problem 1: Resolution of singularities in spatially flat, homogeneous and isotropic cosmology

a) Solve the equation

$$3\left(\frac{\dot{a}}{a}\right)^2 = \rho \tag{1}$$

for the scale factor a(t), where $\rho = \frac{\mathrm{const}}{a^{3(1+\omega)}}$ and ω is a constant determining the so called equation of state of the cosmological model.

- b) Compare the case $\omega = 1$ to general relativity coupled to a massless scalar field as discussed in the lecture.
- c) Solve the "quantum corrected" equations of motion

$$3\left(\frac{\dot{a}}{a}\right)^2 = \rho \left(1 - \frac{\rho}{\rho_{\rm crit}}\right) \tag{2}$$

where $\rho_{\rm crit}$ is a constant depending on \hbar . Discuss the physical properties of these solutions.

Bonus question: Find a "quantum corrected" Hamiltonian that yields (2).

please turn the page

0.1 Hypersurface deformation algebra

Problem 2: Hypersurface deformation algebra

As in the lecture, we consider the canonical theory of a three-dimensional surface σ with coordinates x^a embedded into four-dimensional spacetime with coordinates y^μ . For every point in σ , we have the embedding coordinates $y^\mu(x^a)$. Covectors on spacetime can be pulled back to the hypersurface as $v_a := v_\mu \frac{\partial y^\mu}{\partial x^a}$. We define non-unit time-like conormal $\tilde{n}_\mu = \epsilon_{\mu\nu\rho\sigma}\epsilon^{abc}\frac{\partial y^\nu}{\partial x^a}\frac{\partial y^\sigma}{\partial x^b}\frac{\partial y^\sigma}{\partial x^c}$. The unit time-like conormal is given by $n_\mu := \tilde{n}_\mu/\sqrt{-\tilde{n}_\mu\tilde{n}^\mu}$. We choose the metric signature (-,+,+,+) and coordinates such that $n_0 < 0 \Leftrightarrow n^0 > 0$.

The non-vanishing Poisson brackets read $\{y^{\mu}(x), w_{\nu}(x')\} = \delta^{\mu}_{\nu} \delta^{(3)}(x, x')$.

We define the generators $\mathcal{H} = w_{\perp} := w_{\mu} n^{\mu}$, $\mathcal{H}_a = w_{\mu} \frac{\partial y^{\mu}}{\partial x^a}$.

Show that the Poisson-algebra of hypersurface deformations reads

$$\{\mathcal{H}[M], \mathcal{H}[N]\} = \mathcal{H}_a \left[q^{ab} \left(M \partial_b N - N \partial_b M \right) \right]$$
 (3)

$$\{\mathcal{H}[M], \mathcal{H}_a[N^a]\} = -\mathcal{H}\left[\mathcal{L}_N M\right] \tag{4}$$

$$\{\mathcal{H}_a[M^a], \mathcal{H}_a[N^a]\} = -\mathcal{H}_a\left[\mathcal{L}_N M^a\right]. \tag{5}$$

Hints:

- ϵ^{abc} and $\epsilon_{\mu\nu\rho\sigma}$ are both totally antisymmetric. Note that cyclic permutations are only a symmetry of ϵ^{abc} ! $\epsilon_{\mu\nu\rho\sigma} = -\epsilon_{\nu\rho\sigma\mu}$.
- $\epsilon^{123} = 1$ and $\epsilon_{0123} = -1$.
- The above Lie derivatives read:
 - Of a scalar M along the vector field N^a : $\mathcal{L}_N M = N^a \partial_a M$
 - Of a vector field M^a along the vector field N^b : $\mathcal{L}_N M^a = N^b \partial_b M^a M^b \partial_b N^a$
- Show that $\{w_{\mu}(x), n^{\nu}(x')\} = \{w_{\mu}(x), \tilde{n}^{\rho}(x')\} \frac{1}{\sqrt{-\tilde{n}_{\mu}\tilde{n}^{\mu}}} q_{\rho}^{\nu}$, with $q_{\rho}^{\nu} := \delta_{\rho}^{\nu} + n_{\rho}n^{\nu}$ What role does q_{ρ}^{ν} have?
- Show that $3\epsilon_{\mu\nu\rho\sigma}\epsilon^{abc}\frac{\partial y^{\rho}}{\partial x^{b}}\frac{\partial y^{\sigma}}{\partial x^{c}} = \tilde{n}_{\mu}\frac{\partial x^{a}}{\partial y^{\nu}} \tilde{n}_{\nu}\frac{\partial x^{a}}{\partial y^{\mu}}$
- Drop boundary terms

Bonus question: What changes if we pick the signature (+, +, +, +)?