Problems to Introduction to Quantum Gravity I

WS 18/19

Dr. N. Bodendorfer

Sheet 8 — Handout: 11.12.2018 — To present: 17.12.2018

Problem 1: Covectors

Derive the transformation law for covector components from the definition $dx^i(\partial_j) = \delta^i_j$ for the dual basis. Conclude that the evaluation $w(v) = w_i v^i$ of a vector v using a covector w is independent on the choice of basis.

Problem 2: Push forward and pull back

Compute the coordinate expression for the pull back of a vector field along a diffeomorphism Φ by using its inverse. Confirm that the evaluation of a vector v using a covector w, w(v), is invariant under pull backs, i.e. $(\Phi_*w)(\Phi_*v) = w(v)$. Show also that $\Phi_*\Phi^* = \Phi^*\Phi_* = \text{Id}.$

Hint:
$$\delta_j^i = \frac{\partial x^i}{\partial x^j} = \frac{\partial (\Phi^{-1})^i (\Phi(x))}{\partial x^j} = \dots$$

Problem 3: Great circles

Show that the shortest path between two points on a sphere is a section of a great circle by solving the geodesic equation in suitable coordinates.

Problem 4: BONUS: Geodesic equation

Derive the geodesic equation by varying the length functional

$$d(c) = \int_{c} ds := \int_{c} \sqrt{g_{ij} dx^{i} dx^{j}} := \int_{a}^{b} d\lambda \sqrt{g_{ij}(c(\lambda))} \frac{dx^{i}}{d\lambda} \frac{dx^{j}}{d\lambda}$$

along a curve $c : [a, b] \to \mathcal{M}_n$. It is easiest to start with the case where the curve parameter λ measures proper length, so that

$$\sqrt{g_{ij}(c(\lambda))}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda} = \text{const}$$

as a function of λ along the desired trajectory. What corrections to the geodesic equation are necessary if λ does not measure proper length?