Problem 1: Covectors

Derive the transformation law for covector components from the definition $d x^{i}\left(\partial_{j}\right)=\delta_{j}^{i}$ for the dual basis. Conclude that the evaluation $w(v)=w_{i} v^{i}$ of a vector v using a covector w is independent on the choice of basis.

Problem 2: Push forward and pull back

Compute the coordinate expression for the pull back of a vector field along a diffeomorphism Φ by using its inverse. Confirm that the evaluation of a vector v using a covector $w, w(v)$, is invariant under pull backs, i.e. $\left(\Phi_{*} w\right)\left(\Phi_{*} v\right)=w(v)$. Show also that $\Phi_{*} \Phi^{*}=\Phi^{*} \Phi_{*}=\mathrm{Id}$.

Hint: $\delta_{j}^{i}=\frac{\partial x^{i}}{\partial x^{j}}=\frac{\partial\left(\Phi^{-1}\right)^{i}(\Phi(x))}{\partial x^{j}}=\ldots$

Problem 3: Great circles

Show that the shortest path between two points on a sphere is a section of a great circle by solving the geodesic equation in suitable coordinates.

Problem 4: BONUS: Geodesic equation

Derive the geodesic equation by varying the length functional

$$
d(c)=\int_{c} d s:=\int_{c} \sqrt{g_{i j} d x^{i} d x^{j}}:=\int_{a}^{b} d \lambda \sqrt{g_{i j}(c(\lambda)) \frac{d x^{i}}{d \lambda} \frac{d x^{j}}{d \lambda}}
$$

along a curve $c:[a, b] \rightarrow \mathcal{M}_{n}$. It is easiest to start with the case where the curve parameter λ measures proper length, so that

$$
\sqrt{g_{i j}(c(\lambda)) \frac{d x^{i}}{d \lambda} \frac{d x^{j}}{d \lambda}}=\text { const }
$$

as a function of λ along the desired trajectory. What corrections to the geodesic equation are necessary if λ does not measure proper length?

