Problem 1: Dirac observables for the parametrised harmonic oscillator

Consider the parametrised harmonic oscillator, given by the Hamiltonian

$$
\begin{equation*}
H=\lambda \gamma, \quad \gamma:=\left(p_{t}+\frac{p^{2}}{2}+\frac{q^{2}}{2}\right) \approx 0 \tag{1}
\end{equation*}
$$

and Poisson brackets

$$
\begin{equation*}
\left\{t, p_{t}\right\}=1, \quad\{q, p\}=1 . \tag{2}
\end{equation*}
$$

Compute a complete set of independent Dirac observables using the gauge unfixing projector. Extract the relations $q(t)$ and $p(t)$ from the Dirac observables.

Problem 2: Relativistic particle: First order formulation

Consider the action

$$
\begin{equation*}
S\left[x^{\mu}, e\right]=\int d \tau\left(\frac{1}{4} e^{-1} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} \eta_{\mu \nu}-e m^{2}\right) \tag{3}
\end{equation*}
$$

a) Perform the canonical analysis and compare to the result from the lecture.
b) Show that the mass shell condition together with the definition of p_{μ} fixes e in agreement with the lecture's results.
c) Show that by solving the equations of motion for the auxiliary field e, we obtain the action given in the lecture.

Problem 3: BONUS: Homogeneous Lagrangians

Let \mathcal{L} be a Lagrangian which is homogeneous of degree one in the velocities:

$$
\begin{equation*}
\mathcal{L}\left(q^{i}, c \dot{q}^{i}\right)=c \mathcal{L}\left(q^{i}, \dot{q}^{i}\right) \tag{4}
\end{equation*}
$$

a) Show that the Hamiltonian is weakly zero and that there is at least one primary constraint.
b) Show that the Hamiltonian equations of motion are form-invariant w.r.t. different choices of time.
c) Given \mathcal{L}, construct a new Lagrangian \mathcal{L}^{\prime} which defines the same action principle as \mathcal{L}, but using velocities computed w.r.t. to a different time τ.

