Problem 1: Dirac bracket and choice of second class constraints

Show that the Dirac bracket is (weakly) unaffected by an alternative choice of second class constraints, $\chi_{\alpha}^{\prime}=A_{\alpha}{ }^{\beta} \chi_{\beta}$, where $\operatorname{det} A_{\alpha}{ }^{\beta} \neq 0$.

Problem 2: Henneaux \& Teitelboim: problem 1.21

Assume that the second-class constraints $\chi_{\alpha}=0$ split as $\chi_{\alpha} \equiv\left(\gamma_{a}, C_{a}\right)$ where the subset $\gamma_{a}=0$ is first class by itself, $\left\{\gamma_{a}, \gamma_{b}\right\}=C_{a b}{ }^{c} \gamma_{c}$. Let F be an arbitrary phase space function. Prove the existence of an equivalent function $\bar{F}=F+\lambda^{\alpha} \chi_{\alpha}$, which is first class w.r.t. the $\gamma_{a},\left\{\bar{F}, \gamma_{a}\right\}=f_{a}{ }^{b} \gamma_{b}$. Show that the first-class system with constraints $\gamma_{a}=0$ and Hamiltonian \bar{H} is equivalent to the original second-class system.

Problem 3: Henneaux \& Teitelboim: problem 1.23

Consider the following system of second-class constraints

$$
\begin{align*}
& \chi_{1}=1+q\left(e^{2 q P-Q}+p+P^{2}\right) \tag{1}\\
& \chi_{2}=p+P^{2} \tag{2}
\end{align*}
$$

where (q, p) and (Q, P) are conjugate pairs. Construct a first class system equivalent to it.

Problem 4: Bonus exercise: Recursive Hamiltonians

a) Warmup: Consider the Hamiltonian

$$
\begin{equation*}
H_{0}=O\left(q^{i}, p_{i}, \mu\right) \tag{3}
\end{equation*}
$$

with standard Poisson brackets $\left\{q^{i}, p_{j}\right\}=\delta_{j}^{i}$. μ is for now a fixed parameter constant on phase space. Compute the equations of motion.
b) Next, consider the case when $\mu=f(O)$ is a function of the Hamiltonian. The Hamiltonian is then recursively defined as

$$
\begin{equation*}
H=O\left(q^{i}, p_{i}, f(O)\right) \tag{4}
\end{equation*}
$$

Compute the equations of motion and relate the Hamiltonian vector field to that of H_{0}.
c) Try to rederive the equations of motion along the following lines. First, extend the phase space with the variables $\mu, p_{\mu},\left\{\mu, p_{\mu}\right\}=1$, then imposing the constraint $\Phi=\mu-f(O) \approx 0$, which Poisson commutes with the Hamiltonian. The new Hamiltonian is the total Hamiltonian $H_{T}=H_{0}+\lambda \Phi$ for λ arbitrary. Choose a gauge fixing $p_{\mu}-h\left(q^{i}, p_{j}\right) \approx 0$ for Φ and determine λ by requiring stability of the gauge fixing. For which choices of h do you obtain the wanted equations of motion? Why is this not always the case?

Hint: It may be instructive to start with the simpler case $\mu=f\left(q^{i}, p_{j}\right)$, where f is independent of O.

