Sheet 1 - Handout: 23.10.2018 - To present: 29.10.2018

Problem 1: Harmonic oscillator in the Hamiltonian formalism

a) The Lagrangian of a harmonic oscillator in suitable coordinates is given by

$$
L=\frac{1}{2} \dot{q}^{2}-\frac{1}{2} q^{2} .
$$

Compute and solve the Lagrangian equations of motion.
b) Compute the Hamiltonian via a Legendre transform and solve the Hamiltonian equations of motion.
c) Compute explicitly the Hamiltonian flow via the formula

$$
f(q(t), p(t))=\left.e^{t\{, \cdot H\}} f(q, p)\right|_{q=q_{0}, p=p_{0}}=\left.\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\{f, H\}_{(n)}\right|_{q=q_{0}, p=p_{0}}
$$

given in the lectures.
d) Plot the integral curves and the Hamiltonian vector field in phase space.

Problem 2: Legendre Transform

Consider a convex function $f(x)$. Its Legendre transform $g(u)$ is defined as follows:

1. Set $u(x)=f^{\prime}(x)$ and solve for $x(u)$
2. Set $g(u)=u x(u)-f(x(u))$
a) Show that the Legendre transform is an involution, i.e. that the Legendre transform of $g(u)$ is again $f(x)$.
b) What are the analogues of x, u, f, g in the derivation of the Hamiltonian formalism?
c) Compute the Legendre transform of the function $f(x)=a(x+b)^{2}$. Check your result by applying the Legendre transform again to recover $f(x)$.

Problem 3: Auxiliary fields

Consider the action $S\left[y^{i}, \dot{y}^{i}, z^{A}\right]$, where the z^{A} are auxiliary fields, defined by the property that

$$
\frac{\delta S}{\delta z^{A}}=0 \quad \Leftrightarrow \quad z^{A}=z^{A}\left(y^{i}, \dot{y}^{i}\right) .
$$

Show that one can insert the solutions to the auxiliary equations of motion into the action. In other words, consider the modified action principle $S^{\prime}\left[y^{i}\right]=S\left[y^{i}, \dot{y}^{i}, z^{A}\left(y^{i}, \dot{y}^{i}\right)\right]$ and show that it leads to the same equations of motion for y^{i}.

