Uncertain deductive reasoning

Niki Pfeifer \& Gernot D. Kleiter Department of Psychology, University of Salzburg

WWW.users.sbg.ac.at/~pfeifern/

the uncertainty in the premises is transmitted deductively to the uncertainty of the conclusion (not to be confused with probabilistic consequence relations, like $P\left(\mathfrak{c}^{\mid} \mathfrak{F}_{2}\right)$).

- Goal: Building a competence theory of human reasoning

Experiment I: Two paradoxes of \supset			
Paradox 1: $\quad B \quad \therefore A \supset B$	(logically valid)		
$P(B)=x$	$\therefore P(A \supset B) \in[x, 1]$	(prob. informative)	
$P(B)=x$	$\therefore P(A \wedge B) \in[0, x]$	(prob. informative)	
$P(B)=x$	$\therefore P(B \mid A) \in[0,1]$	(prob. non-informative)	
Paradox 2: $\quad \neg A$	$\therefore A \supset B$	(logically valid)	

Example item: $B \therefore$ If A, then B (Paradox 1, \mathbf{P}_{90})

A Simon is 90% certain: There is a square on this card

Considering A, how certain can Simon be that the following sentence is true?

If there is a red shape on this card, then there is a square on this card.

Considering A, can Simon infer-at all-how certain he can be, that the sentence in the box is true?
\square NO, Simon cannot infer his certainty, since everything between 0% and 100% is pos sible.
YES, Simon can infer his certainty. In case you ticked YES, please fill in:
Simon can be certain from at least $\%$ to at
most ___ $\%$, that the sentence in the box is true.

Results ("Paradox 1": $n_{1}=16$, "Paradox 2": $n_{2}=15$)
\% correct per task (conclusion: If A, then B)
$\mathrm{P}_{60} \quad \mathrm{P}_{70} \quad \mathrm{P}_{90} \quad \mathrm{P}_{v l} \quad \mathrm{P}_{a c} \quad \mathrm{MP}_{90} \quad \mathrm{MP}_{70} \mathrm{MP}_{80} \mathrm{MP}_{v l} \mathrm{MP}_{a c}$
Paradox 162.5081 .2568 .7568 .7568 .7562 .5087 .5081 .2575 .0093 .75 Paradox 273.3373 .3373 .3380 .0066 .6773 .3373 .3386 .6780 .0093 .33
\% correct per task (conclusion: If A, then not B)
Paradox 175.0068 .7562 .5075 .0043 .7581 .2587 .5087 .5068 .7587 .50 Paradox 286.6786 .6786 .6766 .6766 .6780 .0086 .6773 .3393 .3393 .33

- most participants understand that the paradoxes are probabilistically non-informativ
- evidence for the conditional probability interpretation of the conditional; no evidence for implicit and fully explicit mental models

Experiment II: Representation of "if-then"

Example item: Subject/Predicate condition, AA

Does the shape on the screen speak for the assertion in the box? $\begin{array}{ccc}\square & \square & \square \\ \text { speaks against } & \text { neither/nor } & \text { speaks for }\end{array}$

Results: Mean response percentages

| Condition | Response | Task Type | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | AA | AN | NA | NN |
| Sub./Pred. | speaks against | 2.78 | $86.11^{\mid \wedge \supset}$ | 30.56^{\wedge} | 22.22^{\wedge} |
| $\left(n_{1}=18\right)$ | neither/nor | 4.17 | 11.11 | $\mathbf{6 1 . 1 1}$ | $\mathbf{7 6 . 3 9}$ |
| | speaks for | $93.06^{\mid \wedge \supset}$ | 2.78 | 8.33^{\supset} | 1.39^{\supset} |
| Pred. $/$ Subj. | speaks against | 0.00 | $91.67^{\mid \wedge \supset}$ | $\mathbf{5 8 . 3 3}$ | 47.22^{\wedge} |
| $\left(n_{2}=18\right)$ | neither/nor | 5.56 | 6.94 | 26.39^{\mid} | 50.00^{\mid} |
| | speaks for | $94.44^{\mid \wedge \supset}$ | 1.39 | 15.28^{\supset} | 2.78^{\supset} |

- Most participants in the Subject/Predicate condition represent the conditional as a conditional event, (.|.)
- Why is there an asymmetry between the Subject/Predicate condition and the Predicate/Subject condition?

Cognitive representation of subjective probabilities

Subjective probability

Acknowledgments

- EUROCORES programme LogICCC "The Logic of Causal and Proba bilistic Reasoning in Uncertain Environments" (European Science Foun dation)
-FWF project "Mental probability logic" (Austrian Research Fonds)

References

[1] N. Pfeifer and G. D. Kleiter. Towards a mental probability logic. Psychologica Belgica, 45(1):71-99, 2005. Updated version at: www.users.sbg.ac.at/~pfeifern/ [2] N. Pfeifer and G. D. Kleiter. Inference in conditional probability logic. Kybernetika, 42:391-404, 2006.
[3] N. Pfeifer and G. D. Kleiter. The conditional in mental probability logic. In Oaksford, M. (Ed.), The psychology of conditionals. Oxford: Oxford University Press, in press [4] N. Pfeifer and G. D. Kleiter. Framing human reasoning by coherence based probability logic. Journal of Applied Logics, in press.

