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Abstract

We study probabilistically informative (weak) versions of transitivity by using
suitable definitions of defaults and negated defaults in the setting of coherence
and imprecise probabilities. We represent p-consistent sequences of defaults
and/or negated defaults by g-coherent imprecise probability assessments on the
respective sequences of conditional events. Moreover, we prove the coherent
probability propagation rules for Weak Transitivity and the validity of selected
inference patterns by proving p-entailment of the associated knowledge bases.
Finally, we apply our results to study selected probabilistic versions of classical
categorical syllogisms and construct a new version of the square of opposition
in terms of defaults and negated defaults.
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1. Motivation and outline

While Transitivity is basic for (monotonic) reasoning, it does not hold in
nonmonotonic reasoning systems (e.g., [30]). Therefore, various patterns of
Weak Transitivity were studied in the literature (e.g., [19]). In probabilistic
approaches, Transitivity is probabilistically non-informative, i.e., the probabili-
ties of the premises p(C|B) and p(B|A) do not constrain the probability of the
conclusion p(C|A) (for instance, the extension p(C|A) = z of the assessment
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p(C|B) = 1, p(B|A) = 1 is coherent for any z ∈ [0, 1]; see [41, 42]). In this
paper, we study probabilistically informative versions of Transitivity in the set-
ting of coherence ([4, 14, 24, 26]). Transitivity has also been studied in [7, 17];
among other differences, in our approach we use imprecise probabilities in the
setting of coherence, where conditioning events may have zero probability.
After introducing some notions of coherence for set-valued probability assess-
ments (Sect. 2), we present probabilistic interpretations of defaults and negated
defaults (Sect. 3). We represent a knowledge base by a sequence of defaults
and/or negated defaults, which we interpret by an imprecise probability assess-
ment on the associated sequence of conditional events. Moreover, we generalize
definitions of p-consistency and p-entailment. In Sect. 4 we prove the coherent
probability propagation rules for Weak Transitivity (Theorem 3 and Theorem 4).
We then exploit Theorem 3 to demonstrate the validity of selected patterns of
(weak) transitive inferences involving defaults and negated defaults by prov-
ing p-entailment of the corresponding knowledge bases (Sect. 5). Finally, we
illustrate how our results can be applied to investigate classical categorical syl-
logisms (Sect. 6) and to analyze the traditional square of opposition (Sect. 7)
within coherence-based probability logic.

2. Imprecise probability assessments

Given two events E and H, with H ̸= ⊥, the conditional event E|H is
defined as a three-valued logical entity which is true if EH (i.e., E ∧ H) is
true, false if ¬EH is true, and void if H is false. Given a finite sequence of
n ≥ 1 conditional events F = (E1|H1, . . . , En|Hn), we denote by P any precise
probability assessment P = (p1, . . . , pn) on F , where pj = p(Ej |Hj) ∈ [0, 1], j =
1, . . . , n. Moreover, we denote by Π the set of all coherent precise assessments
on F . The coherence-based approach to probability has been adopted by many
authors (see, e.g., [4, 6, 9, 14, 20, 27, 28, 36, 37, 38, 41, 43]); we therefore recall
only selected key features of coherence in this paper. We recall that when there
are no logical relations among the events E1, H1, . . . , En, Hn involved in F , that
is E1, H1, . . . , En, Hn are logically independent, then the set Π associated with
F is the whole unit hypercube [0, 1]n. If there are logical relations, then the
set Π could be a strict subset of [0, 1]n. As it is well known Π ̸= ∅; therefore,
∅ ≠ Π ⊆ [0, 1]n.

Definition 1. An imprecise, or set-valued, assessment I on a family of condi-
tional events F is a (possibly empty) set of precise assessments P on F .

Definition 1, introduced in [21], states that an imprecise (probability) assessment
I on a given family F of n conditional events is just a (possibly empty) subset
of [0, 1]n. Given an imprecise assessment I we denote by Ic the complementary
imprecise assessment of I, i.e. Ic = [0, 1]n \ I. In what follows, we generalize
the notions of g-coherence, coherence, and total-coherence for interval-valued
probability assessments (see, e.g., [24, Definitions 7a, 7b, 7c, respectively]) to
the case of imprecise (in the sense of set-valued) probability assessments.
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Definition 2. Let a sequence of n conditional events F be given. An imprecise
assessment I ⊆ [0, 1]n on F is g-coherent if and only if there exists a coherent
precise assessment P on F such that P ∈ I.

Definition 3. Let I be a subset of [0, 1]n. For each j ∈ {1, 2, . . . , n}, the
projection ρj(I) of I onto the j-th coordinate, is defined as

ρj(I) = {xj ∈ [0, 1] : pj = xj , for some (p1, . . . , pn) ∈ I}.

Definition 4. An imprecise assessment I on a sequence of n conditionals events
F is coherent if and only if, for every j ∈ {1, . . . , n} and for every xj ∈ ρj(I),
there exists a coherent precise assessment P = (p1, . . . , pn) on F , such that
P ∈ I and pj = xj .

Definition 5. An imprecise assessment I on F is totally coherent (t-coherent)
if and only if the following two conditions are satisfied: (i) I is non-empty; (ii)
if P ∈ I, then P is a coherent precise assessment on F .

Remark 1. We observe that:

I is g-coherent ⇐⇒ Π ∩ I ̸= ∅ ⇐⇒ ∀j ∈ {1, . . . , n}, ρj(Π ∩ I) ̸= ∅ ;
I is coherent ⇐⇒ ∀j ∈ {1, . . . , n}, ∅ ≠ ρj(Π ∩ I) = ρj(I) ;
I is t-coherent ⇐⇒ ∅ ≠ Π ∩ I = I .

Then, the following relations among the different notions of coherence hold:
I is t-coherent ⇒ I is coherent ⇒ I is g-coherent .

In the following example we illustrate the different notions of coherence.

Example 1. Given two logically independent events E and H, with H ̸= ⊥,
the set of all coherent precise assessments on the pair F = (E|H,¬E|H) is
obviously the segment Π = {(x, 1−x), x ∈ [0, 1]}. Let us consider three imprecise
assessments on F which, we will see, differ with respect to the three notions
of coherence: I ′ = [0.25, 0.80] × [0.25, 0.80]; I ′′ = [0.25, 0.75] × [0.25, 0.75];
I ′′′ = {(x, 1 − x) : x ∈ [0.25, 0.75]}. The assessment I ′ is g-coherent because
Π∩ I ′ is the (non-empty) segment with extreme points (0.25, 0.75), (0.75, 0.25),
see Figure 1; we also observe that I ′ is not coherent and not t-coherent. The
assessment I ′′ is coherent because ∅ ≠ ρ1(Π ∩ I ′′) = [0.25, 0.75] = ρ1(I ′′)
and ∅ ≠ ρ2(Π ∩ I ′′) = [0.25, 0.75] = ρ2(I ′′) (see Figure 2); we notice that
I ′′ is g-coherent but not t-coherent. The assessment I ′′′ is t-coherent because
∅ ≠ Π ∩ I ′′′ = I ′′′ (see Figure 3); of course I ′′′ is coherent and g-coherent as
well. Finally, we note that any subset I of [0, 1]2 such that Π ∩ I = ∅ is not
g-coherent, not coherent, and not t-coherent.

Definition 6. Let I be a non-empty subset of [0, 1]n. For each sub-vector
(j1, . . . , jm) of (1, . . . , n), the projection ρ(j1,...,jm)(I) of I onto the coordinates
(j1, . . . , jm), with 1 ≤ m ≤ n, is defined as the set ρ(j1,...,jm)(I) ⊆ [0, 1]m such
that each vector (xj1 , . . . , xjm) ∈ ρ(j1,...,jm)(I) is the sub-vector (pj1 , . . . , pjm)
of some P = (p1, . . . , pn) ∈ I.
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I ′

Π
x = p(E|H), y = p(¬E|H)
Π = {(x, y) ∈ [0, 1]2 : x+ y = 1}
I ′ = [0.25, 0.80]× [0.25, 0.80]

Π ∩ I ′ ̸= ∅ =⇒ I ′ is g-coherent

ρ1(I ′) ̸= ρ1(Π ∩ I ′),
ρ2(I ′) ̸= ρ2(Π ∩ I ′)
=⇒ I ′ is not coherent

Π ∩ I ′ ̸= I ′

=⇒ I ′ is not t-coherent
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Figure 1: The g-coherent assessment I′ on (E|H,¬E|H) explained in Example 1.

I ′′

Π
x = p(E|H), y = p(¬E|H)
Π = {(x, y) ∈ [0, 1]2 : x+ y = 1}
I ′′ = [0.25, 0.75]× [0.25, 0.75]

Π ∩ I ′′ ̸= ∅ =⇒ I ′′ is g-coherent

ρ1(I ′′) = ρ1(Π ∩ I ′′),
ρ2(I ′′) = ρ2(Π ∩ I ′′)
=⇒ I ′′ is coherent

Π ∩ I ′′ ̸= I ′′

=⇒ I ′′ is not t-coherent
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Figure 2: The coherent assessment I′′ on (E|H,¬E|H) explained in Example 1.
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I ′′′ = {(x, 1− x) : x ∈ [0.25, 0.75]}

Π ∩ I ′′′ ̸= ∅ =⇒ I ′′′ is g-coherent

ρ1(I ′′′) = ρ1(Π ∩ I ′′′),
ρ2(I ′′′) = ρ2(Π ∩ I ′′′)
=⇒ I ′′ is coherent

∅ ̸= Π ∩ I ′′′ = I ′′′

=⇒ I ′′′ is t-coherent
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Figure 3: The t-coherent assessment I′′′ on (E|H,¬E|H) explained in Example 1.
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Let I be an imprecise assessment on the sequence F = (E1|H1, . . . , En|Hn);
moreover, let En+1|Hn+1 be a further conditional event and let J ⊆ [0, 1]n+1 be
an imprecise assessment on (F , En+1|Hn+1). We say that J is an extension of I
to (F , En+1|Hn+1) iff ρ(1,...,n)(J ) = I, that is: (i) for every (p1, . . . , pn, pn+1) ∈
J , it holds that (p1, . . . , pn) ∈ I; (ii) for every (p1, . . . , pn) ∈ I, there exists
pn+1 ∈ [0, 1] such that (p1, . . . , pn, pn+1) ∈ J .

Definition 7. Let I be a g-coherent assessment on F = (E1|H1, . . . , En|Hn);
moreover, let En+1|Hn+1 be a further conditional event and let J be an exten-
sion of I to (F , En+1|Hn+1). We say that J is a g-coherent extension of I if
and only if J is g-coherent.

Theorem 1. Given a g-coherent assessment I ⊆ [0, 1]n on F , let En+1|Hn+1

be a further conditional event. Then, there exists a g-coherent extension J ⊆
[0, 1]n+1 of I to the family (F , En+1|Hn+1).

Proof. As I is g-coherent, there exists a coherent precise assessment P on
F , with P ∈ I. Then, as it is well known, there exists (a non-empty inter-
val) [p′, p′′] ⊆ [0, 1] such that (P, pn+1) is a coherent precise assessment on
(F , En+1|Hn+1), for every pn+1 ∈ [p′, p′′] (Fundamental Theorem of Proba-
bility; see, e.g., [4, 13, 16, 31]). Now, let any Γ ⊆ [0, 1] be given such that
Γ∩ [p′, p′′] ̸= ∅; moreover, consider the extension J = I×Γ on (F , En+1|Hn+1).
Clearly, (P, pn+1) ∈ J for every pn+1 ∈ Γ ∩ [p′, p′′]; moreover the assessment
(P, pn+1) on (F , En+1|Hn+1) is coherent for every pn+1 ∈ Γ ∩ [p′, p′′]. So by
Definition 2, J is a g-coherent extension of I to (F , En+1|Hn+1).

Given a g-coherent assessment I on a sequence of n conditional events F , for
each coherent precise assessment P on F , with P ∈ I, we denote by [αP ,βP ]
the interval of coherent extensions of P to En+1|Hn+1; that is, the assessment
(P, pn+1) on (F , En+1|Hn+1) is coherent if and only if pn+1 ∈ [αP ,βP ]. Then,
defining the set

Σ =
⋃

P∈Π∩I [αP ,βP ] , (1)

for every pn+1 ∈ Σ, the assessment I × {pn+1} is a g-coherent extension of I to
(F , En+1|Hn+1); moreover, for every pn+1 ∈ [0, 1]\Σ, the extension I×{pn+1} of
I to (F , En+1|Hn+1) is not g-coherent. Thus, denoting by Π′ the set of coherent
precise assessments on (F , En+1|Hn+1), it holds that Σ is the projection onto the
(n+1)-th coordinate of the set (I×[0, 1])∩Π′, that is ρn+1((I×[0, 1])∩Π′) = Σ.
We say that Σ is the set of coherent extensions of the imprecise assessment I
on F to the conditional event En+1|Hn+1.

3. Probabilistic knowledge bases and entailment

Let E and H denote events, where H is a not self-contradictory event. The
sentence “E is a plausible consequence of H” is a default, which we denote by
H |∼ E (following the notation in [19, 30]). Moreover, we denote a negated
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default, ¬(H |∼ E), by H |∼/ E (it is not the case, that: E is a plausible conse-
quence of H). We define defaults and negated defaults in terms of probabilistic
assessments as follows:

Definition 8. Given two events E and H we say that H |∼ E (resp., H |∼/ E)
holds iff our imprecise probability assessment I on E|H is I = {1} (resp.,
I = [0, 1[).

We observe that a default is negated by classical negation: the default H |∼ E
is represented by the assessment {1} on E|H and the negated default H |∼/ E
is represented by the assessment [0, 1[, which is the complementary set of {1}.
Thus, we require that ¬(H |∼/ E) = ¬(¬(H |∼ E)) = (H |∼ E). Given two
events E and H, with H ̸= ⊥, by coherence p(E|H) + p(¬E|H) = 1 (which
holds in general). Thus, the probabilistic interpretation of the following types
of sentencesH |∼ E, H |∼ ¬E, H |∼/ ¬E, andH |∼/ E can be represented in terms
of imprecise assessments on E|H (see Table 1). We recall that the notion of
p-consistency for a knowledge base, given by Adams in [1], has been also stud-
ied in the framework of coherence (see, e.g., [20]). In [20, Definition 4] Adams’
p-consistency of a knowledge base is interpreted by the g-coherence of an impre-
cise assessment, where p(E|H) ≥ 1− ε for every ε > 0, i.e. p(E|H) is close to 1,
for each default H |∼ E in the given knowledge base. Therefore, the notion of
p-consistency is related to the notion of g-coherence. Moreover, as shown in [26,
Definition 2, Remark 1, Theorem 4], p-consistency can be defined equivalently
by requiring p(E|H) = 1 for each default H |∼ E. Of course, for what concerns
practical aspects, instead of the latter approach it is more useful to use imprecise
assessments (see, e.g., [20, 26, 27, 39, 40, 41, 42]). In this paper a knowledge
base K is defined as a (non-empty) finite sequence of defaults and negated de-
faults. Let K = (H1 |∼ E1, . . . , Hn |∼ En, D1 |∼/ C1, . . . , Dm |∼/ Cm) be a knowl-
edge base, with n +m ≥ 1. We now define our probabilistic representation of
the knowledge base K by a corresponding pair (FK, IK), where FK is the or-
dered family of conditional events (E1|H1, . . . , En|Hn, C1|D1, . . . , Cm|Dm) and
IK is the imprecise assessment×n

i=1
{1}××m

j=1
[0, 1[ on FK. We now define the

notion of p-consistency of a given knowledge base in terms of g-coherence.

Type Sentence Probabilistic constraint Assessment I on E|H
A H |∼ E p(E|H) = 1 {1}
E H |∼ ¬E p(¬E|H) = 1 {0}
I H |∼/ ¬E p(¬E|H) < 1 ]0, 1]
O H |∼/ E p(E|H) < 1 [0, 1[

Table 1: Probabilistic interpretations of defaults (types A and E) and negated defaults (types
I and O), and their respective (imprecise) assessments I on a conditional event E|H.

Definition 9. A knowledge base K is p-consistent if and only if the imprecise
assessment IK on FK is g-coherent.

In other words, K = (H1 |∼ E1, . . . , Hn |∼ En, D1 |∼/ C1, . . . , Dm |∼/ Cm) is p-
consistent if and only if there exists a coherent precise assessment
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P = (p1, . . . ,pn, q1, . . . , qm) on FK = (E1|H1, . . . , En|Hn, C1|D1, . . . , Cm|Dm)
such that pi = 1, i = 1, . . . , n, and qi < 1, i = 1, . . . ,m.

Example 2. Let H ̸= ⊥ and Π be the set of all the coherent assessments
x = p(E|H). We distinguish three cases. (i) H ∧ E = ⊥: Π = {0}, (H |∼ E) is
not p-consistent because the assessment p(E|H) = 1 is not coherent; (H |∼/ E) is
p-consistent because the assessment p(E|H) = 0 is coherent, hence there exists
a coherent assessment p(E|H) such that p(E|H) < 1; (ii) H∧¬E = ⊥: Π = {1},
therefore by the same reasoning, (H |∼ E) is p-consistent, while (H |∼/ E) is
not p-consistent; (iii) H ∧ E ̸= ⊥ and H ∧ ¬E ̸= ⊥: Π = [0, 1], (H |∼ E) and
(H |∼/ E) are separately p-consistent.

We define the notion of p-entailment of a (negated) default from a p-consistent
knowledge base in terms of coherent extension of a g-coherent assessment.

Definition 10. Let K be p-consistent. K p-entails A |∼ B (resp., A |∼/ B),
denoted by K |=p A |∼ B (resp., K |=p A |∼/ B), iff the (non-empty) set of
coherent extensions to B|A of IK on FK is {1} (resp., a subset of [0, 1[ ).

Remark 2. We observe that, trivially, for any p-consistent A |∼ B: A |∼ B |=p

A |∼/ ¬B. Then, a conclusion of the form A |∼ B can easily be weakened to
A |∼/ ¬B, i.e., if K |=p A |∼ B, then K |=p A |∼/ ¬B.

Theorem 2. Let K be p-consistent. K |=p A |∼ B (resp., K |=p A |∼/ B), iff
there exists a (non-empty) sub-sequence S of K: S |=p A |∼ B (resp., S |=p

A |∼/ B).

Proof. (⇒) Trivially, by setting S = K.
(⇐) Assume that S |=p A |∼ B (resp., A |∼/ B). Then, for every precise
coherent assessment P ∈ IS on FS , if the extension (P, z) on (FS , B|A) is
coherent, then z = 1 (resp., z ̸= 1). Let P ′ ∈ IK be a coherent precise assess-
ment on FK. For reductio ad absurdum we assume that the extension (P ′, z) on
(FK, B|A) is coherent with z ∈ [0, 1[ (resp., z = 1). Then, the sub-assessment
(P, z) of (P ′, z) on (FS , B|A) is coherent with z ∈ [0, 1[ (resp., z = 1): this
contradicts S |=p A |∼ B (resp., S |=p A |∼/ B). Therefore, K |=p A |∼ B (resp.,
K |=p A |∼/ B).

A similar approach has been developed in [14, Definition 26] (see also
[15]). We observe that if the knowledge base K consists of defaults only,
then definitions 9 and 10 coincide with the notion of p-consistency and p-
entailment, respectively, investigated from a coherence perspective in [26] (see
also [5, 23, 25, 27]). Moreover, p-entailment of the inference rules of the well
known nonmonotonic System P has been studied in this context (e.g., [14, 20],
see also [3, 12, 18]).

Remark 3. By Table 1 the probabilistic interpretation of K = (H1 |∼ E1, . . . ,
Hn |∼ En, D1 |∼/ C1, . . . , Dm |∼/ Cm) can equivalently be represented by the
assessment IK = ×n

i=1
{1}××m

j=1
]0, 1] on FK = (E1|H1, . . . , En|Hn,

¬C1|D1, . . . ,¬Cm|Dm). Definitions 9 and 10 can be rewritten accordingly.
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Example 3. Given three logically independent events A,B,C, with A ̸= ⊥,
any assessment (x, y) ∈ [0, 1]2 on (C|A,B|A) is of course coherent. Furthermore,
the extension z = P (C|AB) of (x, y) on (C|A,B|A) is coherent if and only if
z ∈ [z′, z′′], where ([20])

z
′ =

{ x+y−1

y
> 0, if x+ y > 1,

0, if x+ y ≤ 1,
z
′′ =

{

x
y
< 1, if x < y,

1, if x ≥ y .
(2)

Then, for x = 1 and y = 1 we obtain z′ = z′′ = 1, that is (see also [14]):

(Cautious Monotonicity) (A |∼ C,A |∼ B) |=p AB |∼ C .

Moreover, for x = 1 and for any y > 0 it follows that z′ = z′′ = 1; then, we
obtain (see also [19]):

(Rational Monotonicity) (A |∼ C,A |∼/ ¬B) |=p AB |∼ C . (3)

We observe that Rational Monotonicity can be equivalently formulated as fol-
lows ([14, 20, 32]):

(AB |∼/ C,A |∼/ ¬B) |=p A |∼/ C . (4)

Example 4. Given three logically independent events A,B,C, with A ̸= ⊥
and B ̸= ⊥, in [20] it has been proved that any assessment (x, y) ∈ [0, 1]2 on
(C|A,C|B) is coherent. Furthermore, the extension z = P (C|A ∨ B) of (x, y)
on (C|A,C|B) is coherent if and only if z ∈ [z′, z′′], where3

z
′ =

{ xy
x+y−xy

> 0, if x > 0 ∧ y > 0,

0, if x = 0 ∨ y = 0,
z
′′ =

{ x+y−2xy
1−xy

< 1, if x < 1 ∧ y < 1,

1, if x = 1 ∨ y = 1 .

Then, in our framework we obtain (see also [14, 20, 32]): (A |∼ C,B |∼ C) |=p

A∨B |∼ C (Or-Rule); (A |∼/ C,B |∼/ C) |=p A∨B |∼/ C (Disjunctive Rationality).

4. Weak Transitivity: Propagation of probability bounds

In this section, we prove two results on the propagation of a precise, or
interval-valued, probability assessment on (C|B,B|A,A|A ∨B) to C|A.

Remark 4. Let A,B,C be logically independent events. It can be proved
that the assessment (x, y, t) on F = (C|B,B|A,A|A ∨ B) is coherent for every
(x, y, t) ∈ [0, 1]3, that is the imprecise assessment I = [0, 1]3 on F is t-coherent.
Also I = [0, 1]3 on F ′ = (C|B,B|A,C|A) is t-coherent.4

3Note that z′ = TH
0 (x, y) and z′′ = SH

0 (x, y), where TH
0 and SH

0 are the Hamacher t-norm
and t-conorm (with λ = 0), respectively (see, e.g., [27]).

4For proving total coherence of I on F (resp., F ′) it is sufficient to check that the assessment
{0, 1}3 on F (resp., F ′) is t-coherent ([21, Theorem 7]), i.e, each of the eight vertices of the
unit cube is coherent. Coherence can be checked, for example, by applying Algorithm 1 of
[21] or by the CkC-package [2].
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For the proof of Theorem 4 (which will be given below) we use an algorithm
which computes the interval of coherent probability extensions [z′, z′′] from a
coherent interval-valued probability assessment (see [4, Algorithm 2]). For the
sake of keeping the paper a bit more self-contained, we now sketch this algorithm
and adapt it to deal with precise coherent probability assessments.

Algorithm 1. Let Fn = (E1|H1, . . . , En|Hn) be a sequence of conditional
events and Pn = (p1, . . . , pn) be a coherent precise probability assessment on
Fn, where pj = p(Ej |Hj) ∈ [0, 1], j = 1, . . . , n. Moreover, let En+1|Hn+1 be a
further conditional event and denote by Jn+1 the set {1, . . . , n+ 1}. The steps
below describe the computation of the lower bound z′ (resp., the upper bound
z′′) for the coherent extensions z = p(En+1|Hn+1).

• Step 0. Expand the expression

∧

j∈Jn+1

(EjHj ∨ ¬EjHj ∨ ¬Hj)

and denote by C1, . . . , Cm the constituents contained in H0 =
∨

j∈Jn+1
Hj .

Then, construct the following system in the unknowns λ1, . . . ,λm, z

⎧

⎨

⎩

∑

r:Cr⊆En+1Hn+1
λr = z

∑

r:Cr⊆Hn+1
λr ;

∑

r:Cr⊆EjHj
λr = pj

∑

r:Cr⊆Hj
λr, j ∈ Jn ;

∑

r∈Jm
λr = 1; λr ≥ 0, r ∈ Jm .

(5)

• Step 1. Check the solvability of system (5) under the condition z = 0
(resp., z = 1). If the system (5) is not solvable go to Step 2, otherwise go
to Step 3.

• Step 2. Solve the following linear programming problem

Compute : γ′ = min
∑

r:Cr⊆En+1Hn+1

λr

(respectively : γ′′ = max
∑

r:Cr⊆En+1Hn+1

λr )

subject to:

{
∑

r:Cr⊆EjHj
λr = pj

∑

r:Cr⊆Hj
λr, j ∈ Jn ;

∑

r:Cr⊆Hn+1
λr = 1; λr ≥ 0, r ∈ Jm .

The minimum γ′ (respectively the maximum γ′′) of the objective function
coincides with z′ (respectively with z′′) and the procedure stops.

• Step 3. For each subscript j ∈ Jn+1, compute the maximum Mj of the
function Φj =

∑

r:Cr⊆Hj
λr, subject to the constraints given by the system

(5) with z = 0 (respectively z = 1). We have the following three cases:
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1. Mn+1 > 0 ;
2. Mn+1 = 0 , Mj > 0 for every j ̸= n+ 1 ;
3. Mj = 0 for j ∈ I0 = J ∪ {n+ 1} , with J ̸= ∅ .

In the first two cases z′ = 0 (respectively z′′ = 1) and the procedure stops.
In the third case, defining I0 = J ∪{n+1}, set Jn+1 = I0 and (Fn,Pn) =
(FJ ,PJ ); then go to Step 0.

The procedure ends in a finite number of cycles by computing the value z′

(respectively z′′).

Theorem 3. Let A,B,C be three logically independent events and (x, y, t) ∈
[0, 1]3 be a (coherent) assessment on the family

(

C|B,B|A,A|A∨B
)

. Then, the
extension z = P (C|A) is coherent if and only if z ∈ [z′, z′′], where

[z′, z′′] =

{

[0, 1], t = 0;
[max{0, xy − (1− t)(1− x)/t},min{1, (1− x)(1− y) + x/t}] , t > 0 .

The following detailed proof of Theorem 3 is obtained by applying Algorithm
1 in a symbolic way.5

Proof. Computation of the lower probability bound z′ on C|A.
Input. Fn = (C|B,B|A,A|A ∨B), En+1|Hn+1 = C|A.
Step 0. The constituents associated with (C|B,B|A,A|A ∨B,C|A) and con-
tained in H0 = A ∨ B are C1 = ABC ,C2 = AB¬C ,C3 = A¬BC ,C4 =
A¬B¬C ,C5 = ¬ABC , and C6 = ¬AB¬C. We construct the following start-
ing system with unknowns λ1, . . . ,λ6, z:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ1 + λ3 = z(λ1 + λ2 + λ3 + λ4), λ1 + λ5 = x(λ1 + λ2 + λ5 + λ6),
λ1 + λ2 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t(λ1 + λ2 + λ3 + λ4 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1, λi ≥ 0, i = 1, . . . , 6 .

(6)

Step 1. By setting z = 0 in System (6), we obtain
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λ1 + λ3 = 0,
λ5 = x(λ2 + λ5 + λ6),
λ2 = y(λ2 + λ4),
λ2 + λ4 = t,
λ2 + λ4 + λ5 + λ6 = 1,
λi ≥ 0, i = 1, . . . , 6 ;

⇐⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λ1 = λ3 = 0,
λ2 = yt,
λ4 = t(1− y),
λ5 = x(yt+ 1− t),
λ6 = (1− t)(1− x)− xyt,
λi ≥ 0, i = 1, . . . , 6 .

(7)

As (x, y, t) ∈ [0, 1]3, it holds that: λ2 = yt ≥ 0, λ4 = t(1 − y) ≥ 0, and
λ5 = x(yt+ 1− t) ≥ 0. Thus, System (7) is solvable iff λ6 ≥ 0, that is t(1 −

5Alternative proofs of Theorem 3 can be obtained by applying other equivalent methods
([8, 10, 14, 45]).
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x + xy) ≤ 1 − x. We distinguish two cases: (i) t(1 − x + xy) > 1 − x; (ii)
t(1−x+xy) ≤ 1−x. In Case (i), System (7) is not solvable and we go to Step 2
of the algorithm. In Case (ii), System (7) is solvable and we go to Step 3.
Case (i). By Step 2 we have the following linear programming problem:
Compute z′ = min(λ1 + λ3) subject to:

⎧

⎨

⎩

λ1 + λ5 = x(λ1 + λ2 + λ5 + λ6), λ1 + λ2 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t(λ1 + λ2 + λ3 + λ4 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 = 1, λi ≥ 0, i = 1, . . . , 6.

(8)

As t(1 − x + xy) > 1− x ≥ 0, it holds that t > 0. In this case, the constraints
in (8) can be rewritten in the following way

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

λ1 + λ5 = x
(

y + 1−t
t

)

,
λ1 + λ2 = y,
λ5 + λ6 = 1−t

t
,

λ3 + λ4 = 1− y,
λi ≥ 0, i = 1, . . . , 6,

⇐⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

λ5 = xy + x 1−t
t

− λ1,
λ2 = y − λ1,
λ6 = 1−t

t
− xy − x 1−t

t
+ λ1,

λ4 = 1− y − λ3,
λi ≥ 0, i = 1, . . . , 6.

that is
⎧

⎨

⎩

max
{

0, xy − (1−t)(1−x)
t

}

≤ λ1 ≤ min
{

y, xy + x 1−t
t

}

,
λ2 = y − λ1, 0 ≤ λ3 ≤ 1− y, λ4 = 1− y − λ3,

λ5 = xy + x 1−t
t

− λ1, λ6 = (1−t)(1−x)
t

− xy + λ1.

(9)

As t(1 − x + xy) > 1 − x ≥ 0, it holds that xy − (1 − x)(1 − t)/t > 0.
Thus, the minimum of (λ1 + λ3) subject to (9) is obtained at (λ′

1,λ
′
3) =

(xy − (1− t)(1− x)/t, 0). The procedure stops yielding as output z′ = λ′
1+λ′

3 =
xy − (1− t)(1− x)/t > 0.
Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector
of unknowns (λ1, . . . ,λ6) and the set of solution of System (7), respectively. We
consider the following linear functions (associated with the conditioning events
H1 = B,H2 = H4 = A,H3 = A ∨B) and their maxima in S:

Φ1(Λ) =
∑

r:Cr⊆B λr = λ1 + λ2 + λ5 + λ6,
Φ2(Λ) = Φ4(Λ) =

∑

r:Cr⊆A λr = λ1 + λ2 + λ3 + λ4,
Φ3(Λ) =

∑

r:Cr⊆A∨B λr = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 ,
Mi = maxΛ∈S Φi(Λ), i = 1, 2, 3, 4 .

(10)

By (7) we obtain: Φ1(Λ) = yt + 1 − t, Φ2(Λ) = Φ4(Λ) = t, and Φ3(Λ) =
1, ∀Λ ∈ S. Then, M1 = yt + 1 − t, M2 = M4 = t, and M3 = 1. We consider
two subcases: t > 0; t = 0. If t > 0, then M4 > 0 and we are in the first case
of Step 3. Thus, the procedure stops and yields z′ = 0 as output. If t = 0, then
M1 > 0,M3 > 0 and M2 = M4 = 0. Hence, we are in third case of Step 3 with
J = {2}, I0 = {2, 4} and the procedure restarts with Step 0, with Fn replaced
by FJ = (B|A).
(2nd cycle) Step 0. The constituents associated with (B|A,C|A), contained in
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A, are C1 = ABC,C2 = AB¬C,C3 = A¬BC,C4 = A¬B¬C. The starting
system is

{

λ1 + λ2 = y(λ1 + λ2 + λ3 + λ4), λ1 + λ3 = z(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = 1, λi ≥ 0, i = 1, . . . , 4 .

(11)

(2nd cycle) Step 1. By setting z = 0 in System (11), we obtain

{

λ2 = y, λ1 + λ3 = 0, λ4 = 1− y, λi ≥ 0, i = 1, . . . , 4 . (12)

As y ∈ [0, 1], System (12) is always solvable; thus, we go to Step 3.
(2nd cycle) Step 3. We denote by Λ and S the vector of unknowns (λ1, . . . ,λ4)
and the set of solution of System (12), respectively. The conditioning events
are H2 = A and H4 = A; then the associated linear functions are: Φ2(Λ) =
Φ4(Λ) =

∑

r:Cr⊆A λr = λ1 + λ2 + λ3 + λ4. From System (12), we obtain:
Φ2(Λ) = Φ4(Λ) = 1, ∀Λ ∈ S; so that M2 = M4 = 1. We are in the first case of
Step 3 of the algorithm; then the procedure stops and yields z′ = 0 as output.

To summarize, for any (x, y, t) ∈ [0, 1]3 on (C|B,B|A,A|A ∨ B), we have
computed the coherent lower bound z′ on C|A. In particular, if t = 0, then z′ =
0. Moreover, if t > 0 and t(1−x+xy) ≤ 1−x, that is xy−(1−t)(1−x)/t ≤ 0, we
also have z′ = 0. Finally, if t(1−x+xy) > 1−x, then z′ = xy − (1− t)(1− x)/t.

Computation of the upper probability bound z′′ on C|A.
Input and Step 0 are the same as in the proof of z′.
Step 1. By setting z = 1 in System (6), we obtain

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

λ2 + λ4 = 0,
λ1 + λ5 = x(λ1 + λ5 + λ6),
λ1 = y(λ1 + λ3), λ1 + λ3 = t,
λ1 + λ3 + λ5 + λ6 = 1,
λi ≥ 0, i = 1, . . . , 6 ,

⇐⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

λ1 = yt, λ3 = t(1− y),
λ2 = λ4 = 0,
λ5 = x− xt+ xyt− yt,
λ6 = (1− x)[1− t(1− y)],
λi ≥ 0, i = 1, . . . , 6 .

(13)
As (x, y, t) ∈ [0, 1]3, it holds that: λ1 = yt ≥ 0, λ3 = t(1 − y) ≥ 0, and
λ6 = (1− x)[1 − t(1 − y)] ≥ 0. Then, System (13) is solvable if and only if
λ5 ≥ 0, i.e., t(x+y−xy) ≤ x. We distinguish two cases: (i) x+xyt−xt−yt < 0;
(ii) x + xyt − xt − yt ≥ 0. In Case (i), System (13) is not solvable and we go
to Step 2 of the algorithm. In Case (ii), System (13) is solvable and we go to
Step 3.

Case (i). We take Step 2 and consider the following linear programming
problem: Compute z′′ = max(λ1 + λ3), subject to the constraints in (8). As
x+ xyt− xt− yt < 0, that is t(x+ y − xy) > x ≥ 0, it holds that t > 0. In this
case, the constraints in (8) can be rewritten as in (9). Since x+xyt−xt−yt < 0,
it holds that x+ xyt− xt < yt ≤ y. Thus, we obtain the maximum of (λ1 + λ3)
subject to (9) at (λ

′′

1 ,λ
′′

3 ) = (xy − x+ x/t, 1− y). The procedure stops and
yields the following output : z′′ = 1− y − x+ xy + x/t = (1− x)(1− y) + x/t.

Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector
of unknowns (λ1, . . . ,λ6) and the set of solution of System (13), respectively.
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We consider the functions given in (10). From System (13), we obtain M1 =
yt + 1 − t, M2 = M4 = t, and M3 = 1. If t > 0, then M4 > 0 and we are
in the first case of Step 3. Thus, the procedure stops and yields z′′ = 1 as
output. If t = 0, then M1 > 0,M3 > 0 and M2 = M4 = 0. Hence, we are in
the third case of Step 3 with J = {2}, I0 = {2, 4} and the procedure restarts
with Step 0, with Fn replaced by FJ = (E2|H2) = (B|A) and An replaced by
AJ = ([α2,β2]) = ([y, y]).
(2nd cycle) Step 0. This is the same as the (2nd cycle) Step 0 in the proof of z′.
(2nd cycle) Step 1. By setting z = 1 in System (6), we obtain

{

λ1 = y, λ3 = 1− y, λ2 + λ4 = 0, λi ≥ 0, i = 1, . . . , 4 . (14)

As y ∈ [0, 1], System (14) is always solvable; thus, we go to Step 3.
(2nd cycle) Step 3. Like in the (2nd cycle) Step 3 of the proof of z′, we obtain
M4 = 1. Thus, the procedure stops and yields z′′ = 1 as output.

To summarize, for any assessment (x, y, t) ∈ [0, 1]3 on (C|B,B|A,A|A ∨B),
we have computed the coherent upper probability bound z′′ on C|A. In partic-
ular, if t = 0, then z′′ = 1. Moreover, if t > 0 and t(x + y − xy) ≤ x, that is
(x+ y − xy) ≤ x

t
⇐⇒ x

t
− x− y + xy ≥ 0 ⇐⇒ (1− x)(1− y) + x

t
≥ 1, we also

have z′′ = 1. Finally, if t(x+ y − xy) > x, then z′′ = (1− x)(1− y) + x
t
.

Theorem 4. Let A,B,C be three logically independent events and I =
([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3 be an imprecise (totally-coherent) assess-
ment on

(

C|B,B|A,A|A ∨ B
)

. Then, the set Σ of the coherent extension of I
is the interval [z∗, z∗∗], where [z∗, z∗∗] =
{

[0, 1], t = 0;
[

max
{

0, x1y1 −
(1−t1)(1−x1)

t1

}

,min
{

1, (1− x2)(1− y1) +
x2

t1

}]

, t > 0 .

Proof. We observe that Σ =
⋃

P∈I [z
′
P , z

′′
P ] = [z∗, z∗∗]. If t1 = 0, we obtain

[z∗, z∗∗] = [0, 1] by Theorem 3. If t1 > 0, the proof is straightforward by observ-
ing that the lower bound z′ in Theorem 3 is non-decreasing in the arguments
x, y, t; moreover, the upper bound z′′ is non-decreasing in the argument x, while
it is non-increasing in the argument y and t.

Remark 5. By applying Theorem 4 with x1 = y1 = 1 − ε, t1 > 0, and x2 =

y2 = t2 = 1 we obtain z∗ = max
{

0, (1− ε)2 − (1−ε)ε
t1

}

and z∗∗ = 1, with z∗ = 0

if and only if ε = 1 or (ε < 1) ∧ (t1 ≤ ε/(1− ε)).

5. Weak transitivity involving (negated) defaults

Let A,B,C be three logically independent events. By Remark 4, the p-
consistent knowledge base (B |∼ C,A |∼ B) neither p-entails A |∼ C nor p-
entails A |∼/ C. This will be denoted by (B |∼ C,A |∼ B) "p A |∼ C and (B |∼
C,A |∼ B) "p A |∼/ C, respectively.
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Theorem 5. (B |∼ C,A |∼ B,A ∨B |∼/ ¬A) |=p A |∼ C.

Proof. By Remark 4, the knowledge base K = (B |∼ C,A |∼ B,A ∨ B |∼/
¬A) is p-consistent. Based on Remark 3, we set IK = {1} × {1} × ]0, 1] and
FK =

(

C|B,B|A,A|A ∨ B
)

. Let P be any precise coherent assessment on
FK such that P ∈ IK, i.e., P = (1, 1, t), with t ∈]0, 1]. From Theorem 3,
the interval of coherent extensions from P on FK to C|A is [z′P , z

′′
P ] = [1, 1].

Then, by Equation (1), the set of coherent extensions to C|A from IK on FK is
⋃

P∈IK
[z′P , z

′′
P ] = [1, 1].

The inference rules expressed in Theorem 5 and in Theorem 7 have been
studied within a different semantics by [19].

By Remark 4, we also observe that the p-consistent knowledge base
(B |∼ C,A |∼/ ¬B) does not p-entail A |∼/ ¬C.

Theorem 6. (B |∼ C,A |∼/ ¬B,A ∨B |∼/ ¬A) |=p A |∼/ ¬C.

Proof. By Remark 4, the knowledge base K = (B |∼ C,A |∼/ ¬B,A ∨ B |∼/ ¬A)
is p-consistent. Based on Remark 3, we set IK = {1}× ]0, 1]× ]0, 1] and FK =
(

C|B,B|A,A|A ∨ B
)

. Let P be any precise coherent assessment on FK such
that P ∈ IK, i.e., P = (1, y, t), with y ∈]0, 1] and t ∈]0, 1]. From Theorem 3,
the interval of coherent extensions from P on FK to C|A is [z′P , z

′′
P ] = [y, 1].

Then, by Equation (1), the set of coherent extensions to C|A from IK on FK

is
⋃

P∈IK
[z′P , z

′′
P ] =

⋃

(y,t)∈]0,1]×]0,1][y, 1] =]0, 1]. Therefore, the set of coherent
extensions on ¬C|A is [0, 1[.

Remark 6. We observe that

(B |∼ C,A |∼/ ¬B,A ∨B |∼/ ¬A) |=p AB |∼ C , (15)

and hence
(B |∼ C,A |∼ B,A ∨B |∼/ ¬A) |=p AB |∼ C , (16)

because p(C|A ∧ B) = 1 follows from the probabilistic constraints p(C|B) = 1,
p(B|A) > 0, and p(A|A ∨ B) > 0. Indeed, these constraints imply p(¬C|B) =
1 − P (C|B) = 0 and p(AB|A ∨ B) = p(B|A)p(A|A ∨ B) > 0; then, by the
probability compound theorem

p(ABC|A ∨B) = p(C|AB)p(AB|A ∨B)

it follows that

p(C|AB) = p(ABC|A∨B)
p(AB|A∨B) = p(ABC|A∨B)

p(ABC|A∨B)+p(AB¬C|A∨B) =

= p(ABC|A∨B)
p(ABC|A∨B)+p(A|¬CB)p(¬C|B)p(B|A∨B) =

p(ABC|A∨B)
p(ABC|A∨B) = 1 .

We recall the probabilistic Cut Rule given in [20]:

if p(C|AB) = x and p(B|A) = y, then p(C|A) = z ∈ [xy, xy + 1− y] .
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In particular, for x = 1 and for any y > 0 it follows that z > 0; moreover, for
x = 1 and y = 1 it follows that z = 1. This means in terms of defaults:

AB |∼ C,A |∼/ ¬B |=p A |∼/ ¬C ; (17)

AB |∼ C,A |∼ B |=p A |∼ C . (18)

We also observe that the assessment p(C|B) = p(C|AB) = p(B|A) = 1 is
coherent, then from (18) we obtain

B |∼ C,A |∼ B,AB |∼ C |=p A |∼ C (19)

which is a (weaker) version of Theorem 5 where the premise A ∨ B |∼/ ¬A has
been replaced by AB |∼ C. Likewise, from (17) we obtain

B |∼ C,A |∼/ ¬B,AB |∼ C |=p A |∼/ ¬C (20)

which is a (weaker) version of Theorem 6.

Theorem 7. (B |∼ C,A |∼ B,B |∼/ ¬A) |=p A |∼ C.

Proof. It can be shown that the assessment [0, 1]3 on (C|B,B|A,A|B) is t-
coherent. Then, K = (B |∼ C,A |∼ B,B |∼/ ¬A) is p-consistent. We set IK =
{1}× {1}× ]0, 1] and FK =

(

C|B,B|A,A|B
)

. We observe that A|B ⊆ A|A∨B,
where the binary relation ⊆ denotes the well-known Goodman and Nguyen
inclusion relation between conditional events (see, e.g., [23, 27]). Coherence
requires that p(A|B) ≤ p(A|A∨B). Let P be any precise coherent assessment on
FK such that P ∈ IK, i.e., P = (1, 1, w), with w ∈ ]0, 1]. Thus, for any coherent
extension P ′ = (1, 1, w, t) of P on (FK, A|A∨B), it holds that 0 < w ≤ t. Then,
K′ = (B |∼ C,A |∼ B,B |∼/ ¬A,A∨B |∼/ ¬A) is p-consistent. Thus, by Theorem
5, K′ |=p A |∼ C. Then, for every coherent extension P ′′ = (1, 1, w, t, z) of P ′

on (FK′ , C|A) it holds that z = 1. By reductio ad absurdum, if for some z < 1
the extension (1, 1, w, z) on (FK, C|A) of P ∈ IK on FK were coherent, then—
with 0 < w ≤ t and z < 1—the assessment (1, 1, w, t, z) on (FK′ , C|A) would
be coherent, which contradicts the conclusion z = 1 above. Thus, for every
coherent extension (1, 1, w, z) of P ∈ IK on (FK, C|A) it holds that z = 1.

Theorem 8. (B |∼ C,A |∼/ ¬B,B |∼/ ¬A) |=p A |∼/ ¬C.

Proof. The proof exploits Theorem 6 and is similar to the proof of Theorem 7.

Remark 7. Of course by Definition 8, Theorem 5 to Theorem 8 can be rewrit-
ten in terms of probability constraints. Theorem 5, for example, would then read
as follows: p(C|B) = 1, p(B|A) = 1, and p(A|A ∨B) > 0 implies p(C|A) = 1.
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6. Applications to classical categorical syllogisms

Classical categorical syllogisms are arguments consisting of two premises and
a conclusion. Theorem 3 can be exploited to construct a coherence-based prob-
ability semantics of classical categorical syllogisms, specifically those of syllogis-
tic Figure 1, which were already investigated in Aristotle’s “Analytica Priora.”
Figure 1 syllogisms are valid transitive argument forms which are composed
of universally/existentially quantified statements and their respective negated
versions (see, e.g., [34]). Examples of valid syllogisms of Figure 1 are Modus
Barbara (Every M is P , Every S is M , therefore Every S is P ) and Modus
Darii (Every M is P , Some S is M , therefore Some S is P ).

There are four basic syllogistic sentence types involved in the construction
of the syllogisms: (A) Every a is b, (E) No a is b, (I) Some a is b, and (O) Some
a is not b, where “a” and “b” denote two of the three categorical terms M , P ,
or S. We observe that from a first order logic point of view, the S, M , and
P terms involved in the basic syllogistic sentence types are usually interpreted
as predicates, which are interpreted in our probabilistic semantics by events.
Indeed, we relate each predicate to an event as follows. Imagine a random ex-
periment where the (random) outcome is denoted by X. Consider, for example,
the predicate S. Depending on the result of the experiment, X may satisfy or
not satisfy the predicate S. Then, we denote by ES the event “X satisfies S”
(the event ES is true if X satisfies the predicate S and ES is false if X does not
satisfy S). We conceive the predicate S as the event ES , which will be true or
false. Thus, we simply identify ES by S (in this sense S is both a predicate and
an event). The same reasoning applies to the syllogistic P and M terms, which
are in our context both predicates and events.

The basic syllogistic sentence types (A) Every a is b, (E) No a is b, (I) Some
a is b, and (O) Some a is not b can be interpreted by (A) a |∼ b, (E) a |∼ ¬b,
(I) a |∼/ ¬b, and (O) a |∼/ b, respectively. Table 1 presents the respective proba-
bilistic interpretation (see also [11]).

Based on this interpretation of the basic syllogistic sentence types, we con-
struct default versions of classical categorical syllogisms. The Weak Transi-
tivity rule in the statement of Theorem 5, for example, is our default version
of Modus Barbara, i.e., (M |∼ P, S |∼ M, and S ∨M |∼/ ¬S) |=p S |∼ P . By
weakening the conclusion of Modus Barbara (see Remark 2), we obtain the de-
fault version of Modus Barbari, i.e., (M |∼ P, S |∼ M, and S ∨M |∼/ ¬S) |=p

S |∼/ ¬P . Theorem 6 is our default version of Modus Darii, i.e.,
(M |∼ P, S |∼/ ¬M, and S ∨M |∼/ ¬S) |=p S |∼/ ¬P . We observe that in our ap-
proach the premise S ∨M |∼/ ¬S, that we call EI1, can serve as an existential
import assumption for the validity of the Figure 1 syllogisms. In case of Modus
Barbara, for example, the (major and minor) premises alone (M |∼ P, S |∼ M)
do not p-entail the conclusion S |∼ P (see Section 5, see also Remark 4 for
the probabilistic version). Similarly, the (major and minor) premises alone
(M |∼ P, S |∼/ ¬M) do not p-entail the conclusion S |∼/ ¬P in the case of Modus
Darii. Thus, by adding the existential import assumption S ∨M |∼/ ¬S to the
respective premise sets, the validity of Modus Barbara and Modus Darii is guar-
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anteed.
In terms of probabilistic constraints the existential import assumption EI1

is expressed by p(S|S ∨ M) > 0; moreover, theorem 5 and 6 are expressed,
respectively, by

(Modus Barbara) p(P |M) = 1, p(M |S) = 1, and EI1 =⇒ p(P |S) = 1 ,

(Modus Darii) p(P |M) = 1, p(M |S) > 0, and EI1 =⇒ p(P |S) > 0 .

However, by instantiating S,M,P in Theorem 3, we obtain that the whole
interval [0, 1] on P |S is a coherent extension of the probabilistic constraints
p(P |M) = 1, p(M |S) = 1 (or p(M |S) > 0), and p(S|S ∨M) = 0. Then,
(p(P |M) = 1, p(M |S) = 1, and p(S|S ∨M) = 0) does not imply p(P |S) = 1. In
other words, Modus Barbara (and hence Transitivity) is not valid when we re-
place in the premises set the existential import assumption EI1 by its negation
(i.e., p(S|S ∨M) = 0). Similarly for Modus Darii: (p(P |M) = 1, p(M |S) > 0,
and p(S|S ∨M) = 0) does not imply p(P |S) > 0. As noted above, Modus
Barbara also implies Modus Barbari:

(Modus Barbari) p(P |M) = 1, p(M |S) = 1, and EI1 =⇒ p(P |S) > 0 .

We note that in our approach we need an existential import assumption
for all: Modus Barbara, Modus Barbari, and Modus Darii. From a first order
logic point of view, however, for both Modus Barbara and Modus Darrii the
existential import assumption is not required.6 Historically, it seems plausible
to us that an existential import has been assumed as an (at least implicit)
background assumption in classical categorical syllogisms.

The considered Figure 1 syllogisms can also be expressed with the (stronger)
notion of existential import7 EI2 : p(S|M) > 0 (see [17]). In particular, Modus
Barbara and Modus Darii are presented in terms of defaults in Theorem 7 and
in Theorem 8, respectively. Moreover, in all previous versions of syllogisms

6From a first order logic point of view, the existential import is trivially satisfied in Modus
Darii (i.e., ∀x(Mx ⊃ Px) and ∃x(Sx ∧Mx) logically imply ∃x(Sx ∧ Px), where “⊃” denotes
the material conditional) as the minor premise (∃x(Sx∧Mx)) logically entails the existential
import (∃xSx). Moreover, the first order logic version of Modus Barbara, (i.e., ∀x(Mx ⊃ Px)
and ∀x(Sx ⊃ Mx) logically imply ∀x(Sx ⊃ Px)) can be validated without an existential
import assumption. Indeed, Modus Barbara would also be valid, e.g., if the minor premise
is vacuously true (i.e., if ¬∃xSx). For showing the logical validity of Modus Barbari (i.e.,
∀x(Mx ⊃ Px) and ∀x(Sx ⊃ Mx) logically imply ∃x(Sx ∧ Px)), however, the existential
import assumption (∃xSx) is required, as otherwise both premises could be (vacuously) true
(i.e., ∀x(Mx ⊃ Px) and ∀x(Sx ⊃ Mx)) while the conclusion (∃x(Sx ∧ Px)) would then be
false and therefore Modus Barbari would not be valid.

7As observed in the proof of Theorem 7, S|M ⊆ S|S ∨M and by coherence it follows that
p(S|M) ≤ p(S|S ∨M). Hence, p(S|M) > 0 implies p(S|S ∨M) > 0 but not vice versa. In this
sense, EI2 is stronger than EI1. However, the vice versa holds in the light of the considered
premises: if p(M |S) > 0 (i.e., the minor premise of the syllogism) and p(S|S ∨M) > 0, then
p(S|M) > 0. Indeed, p(M |S) > 0 and p(S|S∨M) > 0 implies p(M∧S|S∨M) = p(M |S)p(S|S∨
M) > 0; moreover, as (M ∧S|M ∨S) ⊆ (S|M), it follows that p(S|M) ≥ p(M ∧S|M ∨S) > 0.
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we do not presuppose any positive antecedent probabilities in our framework.
Assuming the positive antecedent probability EI3 : p(S) > 0 would be yet an-
other existential import assumption sufficient for the validity of Modus Barbara,
Modus Barbari, and Modus Darii which is stronger than EI1. Indeed, coherence
requires that

p(S) = p(S ∧ (S ∨M)) = p(S|S ∨M)P (S ∨M) .

Hence, p(S) > 0 implies p(S|S∨M) > 0 (or equivalently: p(S|S∨M) = 0 implies
p(S) = 0). Therefore, p(S) > 0 is stronger than p(S|S ∨ M) > 0. Moreover,
in Modus Barbara, Modus Barbari, and Modus Darii with EI3 coherence also
requires positive probability for the antecedent of the major premise, indeed, as
p(M |S) > 0 and p(S) > 0, it holds that: p(M) ≥ p(M ∧ S) = p(M |S)p(S) > 0.
However, it can be proved that p(P |M) = 1, p(M |S) > 0, and p(S) = 0 does
not imply p(M) = 0. The deepening of these aspects could be related to the
general problem of zero layers largely studied in [14].

Based on Remark 6, we observe that Figure 1 syllogisms can also be ex-
pressed with the (weaker) notion of existential import EI4 : p(P |MS) = 1. In
particular, Modus Barbara and Modus Darii are presented in terms of defaults in
formulas (19) and (20), respectively. We note that by adding EI4 to the premise
set of the considered Figure 1 syllogisms, we have p(P |MS) = p(P |M) = 1,
which is postulated (in terms of conditional independence assumptions) in [11]
for obtaining the validity of the corresponding syllogisms. However, in con-
trast to [11], we obtain the validity of these syllogisms with EI4 even without
presupposing positive antecedent probabilities.

We are currently working on a coherence-based probability semantics for
classical categorical syllogisms, where we further exploit the ideas presented
above.

7. Default square of opposition

In the context of categorical syllogisms, the well-known traditional square
of opposition is used to study logical relations among the four basic syllogistic
sentence types A, E, I, and O (see, e.g., [33]), which are: contradiction, con-
trariety, subcontrariety, and subalternation. In this section we introduce a new
interpretation of the traditional square of opposition in terms of defaults and
negated defaults. We now use the notions of p-consistency (Definition 9) and
p-entailment (Definition 10) to define suitable interpretations of the four logical
relations among A, E, I, and O, which were defined in terms of defaults and
negated defaults in Section 6 (see also Table 1).

Let d denote a sentence expressing a default or a negated default.

Definition 11 (Contrariety). Given two statements d1 and d2, we say that
d1 and d2 are contraries iff the sequence (d1, d2) is not p-consistent.8

8 Traditionally if two statements s1 and s2 are contraries, then s1 and s2 cannot both be

19



Definition 12 (Subcontrariety). Given two sentences d1 and d2, we say that
d1 and d2 are subcontraries iff the sequence (¬d1,¬d2) is not p-consistent.

Definition 13 (Contradiction). Given two sentences d1 and d2, we say that
d1 and d2 are contradictories iff they are contraries and subcontraries.

Definition 14 (Subalternation). Given two sentences d1 and d2, we say that
d2 is a subaltern of d1 iff d1 p-entails d2.

By coherence, it is easy to verify the following relations among the basic syllo-
gistic sentence types A, E, I, and O:

(i) S |∼ P and S |∼ ¬P are contraries;
(ii) S |∼/ ¬P and S |∼/ P are subcontraries;
(iii) S |∼ P and S |∼/ P are contradictories;

S |∼ ¬P and S |∼/ ¬P are contradictories;
(iv) S |∼/ ¬P is a subaltern of S |∼ P ;

S |∼/ P is a subaltern of S |∼ ¬P .

Based on the relations (i)–(iv) we construct a square of opposition in terms of
defaults and negated defaults, which is depicted in Figure 4. We note that in our
default square of opposition we implicitly assume that the antecedent S must
not be a self-contradictory event (S ̸= ⊥). In general, this can be interpreted
as a (logical) existential import assumption, which is always presupposed in
coherence-based probability logic. In our context, self-contradictory antecedents
do not make any sense since the conditional event P |S is undefined if S ≡ ⊥.

8. Concluding remarks

In this paper we proved coherent probability propagation rules for Weak
Transitivity. We applied our results to demonstrate the validity of selected in-
ference patterns involving defaults and—new probabilistic notions of—negated
defaults in the context of nonmonotonic reasoning. Moreover, we illustrated
how our results can also be applied to develop a coherence-based probability
semantics of classical categorical syllogisms and to construct a new version of
the square of opposition.

Our definition of negated defaults, based on imprecise probabilities (Sect. 3),
can be seen as an instance of the wide-scope reading of the negation of a condi-
tional. It offers an interesting alternative to the narrow-scope reading, where a
conditional is negated by negating its consequent [35].

Finally, we note that most of our results concerning the probability propa-
gation rules of Weak Transitivity would also hold within standard approaches

true. Some definitions of contrariety additionally require that “s1 and s2 can both be false”
(for a discussion see, e.g., [29, 44]). We omit the respective (probabilistic) version of this
additional requirement in our definition of contrariety. Similarly, mutatis mutandis, in our
definition of subcontrariety.
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(A)
S |∼ P

(I)
S |∼/ ¬P

(O)
S |∼/ P

(E)
S |∼ ¬P

subalterns subalternscontradictories

contraries

subcontraries

Figure 4: Default square of opposition defined on the four sentence types introduced in Table 1.
It provides a new interpretation of the traditional square of opposition (see, e.g., [33]), where
the corners are labeled by “Every S is P” (A), “No S is P” (E), “Some S is P” (I), and “Some
S is not P” (O).

to probability where conditional probability p(E|H) is defined by the ra-
tio p(E ∧ H)/p(H) (requiring positive probability of the conditioning event,
p(H) > 0). However, in our coherence-based approach, our results even
hold when conditioning events have zero probability. Furthermore, we observe
that, by Theorem 3, p(C|B) = 1, p(B|A) = 1, and p(A|A ∨ B) = 0 implies
0 ≤ p(C|A) ≤ 1. This observation cannot be made in standard approaches to
probability, as p(A|A ∨ B) = 0 implies that the probability of the conditioning
event A equals to zero, i.e., P (A) = 0.
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