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Abstract. This paper continues our work on a coherence-based proba-
bility semantics for Aristotelian syllogisms (Gilio, Pfeifer, and Sanfilippo,
2016; Pfeifer and Sanfilippo, 2018) by studying Figure III under coher-
ence. We interpret the syllogistic sentence types by suitable conditional
probability assessments. Since the probabilistic inference of P |S from the
premise set tP |M,S|Mu is not informative, we add ppM |pS _ Mqq ° 0
as a probabilistic constraint (i.e., an “existential import assumption”)
to obtain probabilistic informativeness. We show how to propagate the
assigned premise probabilities to the conclusion. Thereby, we give a prob-
abilistic meaning to all syllogisms of Figure III. We discuss applications
like generalised quantifiers (like Most S are P ) and (negated) defaults.

Keywords: Aristotelian syllogisms ¨ Coherence ¨ Conditional events ¨
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1 Motivation and Outline

Aristotelian syllogisms constitute one of the oldest logical reasoning systems.

Given the over two millennia long history, not many authors proposed proba-
bilistic semantics for Aristotelian syllogisms (see, e.g., [7,8,11,16,30]) to over-

come formal restrictions inherited by deductive logic, like its monotonicity (i.e.,

the inability to retract conclusions in the light of new evidence) or its bivalence
(i.e., the inability to express degrees of belief ). This paper continues our work on

categorical Aristotelian syllogisms within coherence-based probability logic (see,

e.g., [5,10,12,16,39]; for other approach to probability logic see, e.g., [1,2,24,32]).

We aim to manage nonmonotonicity and degrees of belief, which are necessary

for the formalisation of commonsense reasoning. We have studied Figure I, which

have transitive structures [16] and Figure II, where the middle term constitutes

the consequents of both premises [41]. We extend this work by studying Fig-

ure III under coherence. The middle term constitutes the antecedents of the

premises of Figure III syllogisms (see Table 1). After recalling some preliminary

notions and results in Section 2, we show how to propagate the assigned prob-

abilities to the sequence of conditional events pP |M,S|M,M |pS _ Mqq to the
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AII Datisi Every M is P, some M is S, therefore some S is P.
AAI* Darapti Every M is P, every M is S, therefore some S is P.
EIO Ferison No M is P, some M is S, therefore some S is not P.
EAO* Felapton No M is P, every M is S, therefore some S is not P.
IAI Disamis Some M is P, every M is S, therefore some S is P.
OAO Bocardo Some M is not P, every M is S, therefore some S is not P.

Table 1: Traditional (logically valid) Aristotelian syllogisms of Figure III (term

order: M—P , M—S, therefore S—P ).
*
denotes syllogisms which require im-

plicit existential import assumptions for logical validity (since universally quan-

tifiers statements could be vacuously true, M must not be “empty”, i.e., DxMx).

conclusion P |S in Section 3. This result is applied in Section 4, where we firstly

give a probabilistic meaning to the traditionally valid syllogisms of Figure III

(see Table 1). Secondly, we connect Aristotelian syllogistics with nonmonotonic

reasoning by constructing syllogisms in terms of defaults and negated defaults.

Section 5 concludes by remarks on further applications and future work.

2 Preliminary Notions and Results

In this section we recall selected key features of coherence (for more details

see, e.g., [4,9,10,19,20,34,45]). Given two events E and H, with H ‰ K, the

conditional event E|H is defined as a three-valued logical entity which is true
if EH (i.e., E ^ H) is true, false if sEH is true, and void if H is false. In

betting terms, assessing ppE|Hq “ x means that, for every real number s, you

are willing to pay an amount s ¨ x and to receive s, or 0, or s ¨ x, according to

whether EH is true, or sEH is true, or sH is true (i.e., the bet is called o↵),

respectively. In these cases the random gain (that is, the di↵erence between

the (random) amount that you receive and the amount that you pay) is G “

psEH`0 sEH`sx sHq´sx “ sEH`sxp1´Hq´sx “ sHpE´xq. More generally

speaking, consider a real-valued function p : K Ñ R, where K is an arbitrary

(possibly not finite) family of conditional events. Let F “ pE1|H1, . . . , En|Hnq

be a sequence of conditional events, where Ei|Hi P K, i “ 1, . . . , n, and let

P “ pp1, . . . , pnq be the vector of values pi “ ppEi|Hiq, where i “ 1, . . . , n. We

denote by H0 the disjunction H1 _ ¨ ¨ ¨ _ Hn. With the pair pF ,Pq we associate

the random gain G “
∞n

i“1 siHipEi ´ piq, where s1, . . . , sn are n arbitrary real

numbers. G represents the net gain of n transactions. Let GH0 denote the set of

possible values of G restricted to H0, that is, the values of G when at least one

conditioning event is true.

Definition 1. Function p defined on K is coherent if and only if, for every inte-
ger n, for every sequence F of n conditional events in K and for every s1, . . . , sn,
it holds that: minGH0 § 0 § maxGH0 .

Intuitively, Definition 1, means in betting terms that a probability assessment is

coherent if and only if, in any finite combination of n bets, it cannot happen that

the values in GH0 are all positive, or all negative (no Dutch Book). Coherence can
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be also characterized in terms of proper scoring rules ([6]), which can be related to

the notion of entropy and extropy in information theory ([28,29]). Coherence can

be checked, for example, by applying [13, Algorithm 1] or by the CkC-package [3].

We recall the fundamental theorem of de Finetti for conditional events, which

states that a coherent assessment of premises can always be coherently extended

to a conclusion [4,9,25,31,43,46]:

Theorem 1. Let a coherent probability assessment P “ pp1, . . . , pnq on a se-
quence F “ pE1|H1, . . . , En|Hnq be given. Then, for a given further conditional
event En`1|Hn`1, there exists a suitable closed interval rz

1
, z

2
s Ñ r0, 1s such that

the extension pP, zq of P to pF , En`1|Hn`1q is coherent if and only if z P rz
1
, z

2
s.

Definition 2. An imprecise, or set-valued, assessment I on a finite sequence of
n conditional events F is a (possibly empty) set of precise assessments P on F .

Definition 2, introduced in [13], states that an imprecise (probability) assessment
I on a finite sequence F of n conditional events is just a (possibly empty) subset

of r0, 1s
n
. We recall the notions of g-coherence and total-coherence for imprecise

(in the sense of set-valued) probability assessments [16].

Definition 3. Let a sequence of n conditional events F be given. An imprecise
assessment I Ñ r0, 1s

n on F is g-coherent if and only if there exists a coherent
precise assessment P on F such that P P I.

Definition 4. An imprecise assessment I on F is totally coherent (t-coherent)
if and only if the following two conditions are satisfied: (i) I is non-empty; (ii)
if P P I, then P is a coherent precise assessment on F .

We denote by⇧ the set of all coherent precise assessments on F . We recall that if

there are no logical relations among the events E1, H1, . . . , En, Hn involved in F ,

that is E1, H1, . . . , En, Hn are logically independent, then the set ⇧ associated

with F is the whole unit hypercube r0, 1s
n
. If there are logical relations, then the

set ⇧ could be a strict subset of r0, 1s
n
. As it is well known ⇧ ‰ H; therefore,

H ‰ ⇧ Ñ r0, 1s
n
.

Remark 1. Note that: I is g-coherent ñ ⇧ X I ‰ H; I is t-coherent ñ

H ‰ ⇧ X I “ I . Then: I is t-coherent ñ I is g-coherent. Thus, g-coherence is

weaker than t-coherence. For further details and relations to coherence see [16].

Given a g-coherent assessment I on a sequence of n conditional events F , for

each coherent precise assessment P on F , with P P I, we denote by rz
1
P
, z

2
P

s the

interval of coherent extensions of P to En`1|Hn`1; that is, the assessment pP, zq

on pF , En`1|Hn`1q is coherent if and only if z P rz
1
P
, z

2
P

s. Then, defining the set

⌃ “
î

PP⇧XI
rz

1
P
, z

2
P

s, for every z P ⌃, the assessment I ˆ tzu is a g-coherent

extension of I to pF , En`1|Hn`1q; moreover, for every z P r0, 1sz⌃, the extension

I ˆ tzu of I to pF , En`1|Hn`1q is not g-coherent. We say that ⌃ is the set of
coherent extensions of the imprecise assessment I on F to the conditional event

En`1|Hn`1.
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3 Figure III: Propagation of Probability Bounds

We observe that the probabilistic inference of C|A from the premise set

tC|B,A|Bu, which corresponds to the general form of syllogisms of Figure III, is

probabilistically non-informative. Therefore, we add the probabilistic constraint

ppB|A _ Bq ° 0 to obtain probabilistic informativeness. This constraint serves

as an “existential import assumption” (see also [16,41]). Contrary to first or-

der monadic predicate logic, which requires existential import assumptions for

Darapti and Felapton only (see Table 1), our probabilistic existential import

assumption is required for all valid syllogisms of Figure III.

Remark 2. Let A,B,C be logically independent events. It can be proved that the

assessment px, y, zq on pC|B,A|B,C|Aq is coherent for every px, y, zq P r0, 1s
3
,

that is, the imprecise assessment I “ r0, 1s
3
on pC|B,A|B,C|Aq is totally

coherent. Moreover, it can also be proved that the assessment px, y, tq on

pC|B,A|B,B|A _ Bq is coherent for every px, y, tq P r0, 1s
3
, that is, the im-

precise assessment I “ r0, 1s
3
on pC|B,A|B,B|A _ Bq is totally coherent. It is

su�cient to check the coherence of each vertex of the unit cube [13].

Consider a coherent probability assessment px, y, tq on the sequence of condi-

tional events pC|B,A|B,B|A_Bq. The next result allows for computing the lower

and upper bounds, z
1
and z

2
respectively, for the coherent extension z “ ppC|Aq.

Theorem 2. Let A,B,C be three logically independent events and px, y, tq P

r0, 1s
3 be a (coherent) assessment on the family

`
C|B,A|B,B|A_B

˘
. Then, the

extension z “ ppC|Aq is coherent if and only if z P rz
1
, z

2
s, where

z1 “
$
&

%

0, if tpx ` y ´ 1q § 0,
tpx ` y ´ 1q
1 ´ tp1 ´ yq , if tpx ` y ´ 1q ° 0,

z2 “
$
&

%

1, if tpy ´ xq § 0,

1 ´ tpy ´ xq
1 ´ tp1 ´ yq , if tpy ´ xq ° 0.

Proof. In order to compute the lower and upper probability bounds on the fur-

ther event C|A (i.e., the conclusion), we exploit Theorem 1 by applying [16,

Algorithm 1] (which is originally based on [4, Algorithm 2]) in a symbolic way.

Computation of the lower probability bound z
1 on C|A.

Input. The assessment px, y, tq on F “ pC|B,A|B,B|A_Bq and the event C|A.

Step 0. The constituents associated with pC|B,A|B,B|A _ B,C|Aq are C0 “

sA sB, C1 “ ABC, C2 “ A sBC, C3 “ AB sC, C4 “ A sB sC, C5 “ sABC, C6 “

sAB sC. We observe that H0 “ A _ B; then, the constituents contained in H0 are

C1, . . . , C6. We construct the starting system with the unknowns �1, . . . ,�6, z:

$
’’’’&

’’’’%

�1 ` �2 “ zp�1 ` �2 ` �3 ` �4q,

�1 ` �5 “ xp�1 ` �3 ` �5 ` �6q,

�1 ` �3 “ yp�1 ` �3 ` �5 ` �6q,

�1 ` �3 ` �5 ` �6 “ tp
∞6

i“1 �iq,∞6
i“1 �i “ 1, �i • 0, i “ 1, . . . , 6 ,

ñ

$
’’’’&

’’’’%

�1 ` �2 “ zp�1 ` �2 ` �3 ` �4q,

�1 ` �5 “ xt,

�1 ` �3 “ yt,

�1 ` �3 ` �5 ` �6 “ t,∞6
i“1 �i “ 1, �i • 0, i “ 1, . . . , 6 .

(1)
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Step 1. By setting z “ 0 in System (1), we obtain

$
’’&

’’%

�1 ` �2 “ 0, �3 “ yt, �5 “ xt,

�3 ` �5 ` �6 “ t,

�3 ` �4 ` �5 ` �6 “ 1,

�i • 0, i “ 1, . . . , 6 .

ñ

$
’’&

’’%

�1 “ �2 “ 0,

�3 “ yt, �4 “ 1 ´ t, �5 “ xt,

�6 “ tp1 ´ x ´ yq,

�i • 0, i “ 1, . . . , 6 .

(2)

As px, y, tq P r0, 1s
3
, the conditions �h • 0, h “ 1, . . . , 5, in System (2) are all

satisfied. Then, System (2), i.e. System (1) with z “ 0, is solvable if and only if

�6 “ tp1 ´ x ´ yq • 0. We distinguish two cases: piq tp1 ´ x ´ yq † 0 (i.e. t ° 0

and x ` y ° 1); piiq tp1 ´ x ´ yq • 0, (i.e. t “ 0 or pt ° 0q ^ px ` y § 1q). In

Case piq, System (2) is not solvable and we go to Step 2 of the algorithm. In

Case piiq, System (2) is solvable and we go to Step 3.

Case piq. By Step 2 we have the following linear programming problem:

Compute �
1

“ minp
∞

i:CiÑAC �rq “ minp�1 ` �2q subject to:
$
&

%

�1 ` �5 “ xp�1 ` �3 ` �5 ` �6q, �1 ` �3 “ yp�1 ` �3 ` �5 ` �6q,

�1 ` �3 ` �5 ` �6 “ tp
∞6

i“1 �iq, �1 ` �2 ` �3 ` �4 “ 1,

�i • 0, i “ 1, . . . , 6.

(3)

We notice that y is positive since x ` y ° 1 (and px, y, tq P r0, 1s
3
). Then, also

1 ´ tp1 ´ yq is positive and the constraints in (3) can be rewritten as

$
’’’’&

’’’’%

�1 ` �5 “ xtp1 ` �5 ` �6q,

�1 ` �3 “ ytp1 ` �5 ` �6q,

�5 ` �6 “ pt ´ ytqp1 ` �5 ` �6q

�1 ` �2 ` �3 ` �4 “ 1,

�i • 0, i “ 1, . . . , 6,

ñ

$
’’’’’&

’’’’’%

�5 ` �6 “
tp1´yq

1´tp1´yq ,

�1 ` �5 “ xtp1 `
tp1´yq

1´tp1´yq q “
xt

1´tp1´yq ,

�1 ` �3 “ ytp1 `
tp1´yq

1´tp1´yq q “
yt

1´tp1´yq ,
�1 ` �2 ` �3 ` �4 “ 1,

�i • 0, i “ 1, . . . , 6,

ñ

$
’&

’%

maxt0,
tpx`y´1q
1´tp1´yq u § �1 § mintx, yu

t
1´tp1´yq ,

0 § �2 §
1´t

1´tp1´yq , �3 “
yt

1´tp1´yq ´ �1, �4 “
1´t

1´tp1´yq ´ �2,

�5 “
xt

1´tp1´yq ´ �1, �6 “
tp1´x´yq
1´tp1´yq ` �1.

(4)

Thus, by recalling that x ` y ´ 1 ° 0, the minimum �
1
of �1 ` �2 subject to

(3), or equivalently subject to (4), is obtained at p�
1
1,�

1
2q “ p

tpx`y´1q
1´tp1´yq , 0q. The

procedure stops yielding as output z
1

“ �
1

“ �
1
1 ` �

1
2 “

tpx`y´1q
1´tp1´yq .

Case piiq. We take Step 3 of the algorithm. We denote by ⇤ and S the vector

of unknowns p�1, . . . ,�6q and the set of solutions of System (2), respectively. We

consider the following linear functions (associated with the conditioning events

H1 “ H2 “ B,H3 “ A _ B,H4 “ A) and their maxima in S:

�1p⇤q “ �2p⇤q “
∞

r:CrÑB �r “ �1 ` �3 ` �5 ` �6,

�3p⇤q “
∞

r:CrÑA_B �r “ �1 ` �2 ` �3 ` �4 ` �5 ` �6,

�4p⇤q “
∞

r:CrÑA �r “ �1 ` �2 ` �3 ` �4, Mi “ max⇤PS �ip⇤q, i “ 1, 2, 3, 4 .

(5)
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By (2) we obtain: �1p⇤q “ �2p⇤q “ 0 ` yt ` xt ` t ´ xt ´ yt “ t, �3p⇤q “ 1,

�4p⇤q “ yt ` 1 ´ t “ 1 ´ tp1 ´ yq, @⇤ P S. Then, M1 “ M2 “ t, M3 “ 1,

and M4 “ 1 ´ p1 ´ yqt. We consider two subcases: t † 1; t “ 1. If t † 1, then

M4 “ yt ` 1 ´ t ° yt • 0; so that M4 ° 0 and we are in the first case of Step 3

(i.e., Mn`1 ° 0). Thus, the procedure stops and yields z
1

“ 0 as output. If t “ 1,

then M1 “ M2 “ M3 “ 1 ° 0 and M4 “ y. Hence, we are in the first case of

Step 3 (when y ° 0) or in the second case of Step 3 (when y “ 0). Thus, the

procedure stops and yields z
1

“ 0 as output.

Computation of the upper probability bound z
2 on C|A. Input and Step 0 are

the same as in the proof of z
1
. Step 1. By setting z “ 1 in System (1), we obtain

"
�1 ` �2 “ �1 ` �2 ` �3 ` �4, �1 ` �5 “ xt, �1 ` �3 “ yt,

�1 ` �3 ` �5 ` �6 “ t, �1 ` �2 ` �3 ` �4 ` �5 ` �6 “ 1, �i • 0, i “ 1, . . . , 6 ,

or equivalently

$
’’&

’’%

�3 “ �4 “ 0, �1 ` �5 “ xt,

�1 “ yt, �1 ` �5 ` �6 “ t,

�1 ` �2 ` �5 ` �6 “ 1,

�i • 0, i “ 1, . . . , 6 ;

ñ

$
&

%

�1 “ yt, �2 “ 1 ´ t, �3 “ �4 “ 0,

�5 “ px ´ yqt, �6 “ tp1 ´ xq,

�i • 0, i “ 1, . . . , 6 .

(6)

As px, y, tq P r0, 1s
3
, the inequalities �h • 0, h “ 1, 2, 3, 4, 6 are satisfied. Then,

System (6), i.e. System (1) with z “ 1, is solvable if and only if �5 “ px´yqt • 0.

We distinguish two cases: piq px´ yqt † 0, i.e. x † y and t ° 0; piiq px´ yqt • 0,

i.e. x • y or t “ 0. In Case piq, System (6) is not solvable and we go to Step 2

of the algorithm. In Case piiq, System (6) is solvable and we go to Step 3.

Case piq. By Step 2 we have the following linear programming problem:

Compute �
2

“ maxp�1`�2q subject to the constraints in (3). As px, y, tq P r0, 1s
3

and x † y, it follows that mintx, yu “ x and y ° 0. Then, in this case the

quantity 1 ´ tp1 ´ yq is positive and the constraints in (3) can be rewritten

as in (4). Thus, the maximum �
2

of �1 ` �2 subject to (4), is obtained

at p�
2
1,�

2
2q “ p

xt
1´tp1´yq ,

1´t
1´tp1´yq q. The procedure stops yielding as output

z
2

“ �
2

“ �
2
1 ` �

2
2 “

xt
1´tp1´yq `

1´t
1´tp1´yq “

1´t`xt
1´t`yt “ 1 ´

tpy´xq
1´t`yt .

Case piiq. We take Step 3 of the algorithm. We denote by ⇤ and S the vector

of unknowns p�1, . . . ,�6q and the set of solutions of System (6), respectively.

We consider the functions �ip⇤q and the maxima Mi, i “ 1, 2, 3, 4, given in

(5). From System (6), we observe that the functions �1, . . . ,�4 are constant for

every ⇤ P S, in particular it holds that �1p⇤q “ �2p⇤q “ t, �3p⇤q “ 1 and

�4p⇤q “ yt` 1´ t` 0` 0 “ 1´ tp1´ yq for every ⇤ P S. So that M1 “ M2 “ t,

M3 “ 1, and M4 “ 1 ´ tp1 ´ yq. We consider two subcases: t † 1; t “ 1.

If t † 1, then M4 “ yt ` 1 ´ t ° yt • 0; so that M4 ° 0 and we are in the first

case of Step 3 (i.e., Mn`1 ° 0). Thus, the procedure stops and yields z
2

“ 1 as

output.
If t “ 1, then M1 “ M2 “ M3 “ 1 ° 0 and M4 “ y. Hence, we are in the first
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case of Step 3 (when y ° 0) or in the second case of Step 3 (when y “ 0). Thus,

the procedure stops and yields z
2

“ 1 as output. [\

Remark 3. From Theorem 2, we obtain z
1

° 0 if and only if tpx ` y ´ 1q ° 0.

Moreover, we obtain z
2

† 1 if and only if tpy ´ xq ° 0.

Based on Theorem 2, the next result presents the set of coherent extensions of a

given interval-valued probability assessment I “ prx1, x2s ˆ ry1, y2s ˆ rt1, t2sq Ñ

r0, 1s
3
on

`
C|B,A|B,B|A _ B

˘
to the further conditional event C|A.

Theorem 3. Let A,B,C be three logically independent events and I “

prx1, x2s ˆ ry1, y2s ˆ rt1, t2sq Ñ r0, 1s
3 be an imprecise assessment on`

C|B,A|B,B|A _ B
˘
. Then, the set ⌃ of the coherent extensions of I on C|A

is the interval rz
˚
, z

˚˚
s, where

z
˚

“

$
&

%

0, if t1px1 ` y1 ´ 1q § 0,

t1px1 ` y1 ´ 1q

1 ´ t1p1 ´ y1q
, if t1px1 ` y1 ´ 1q ° 0, and

z
˚˚

“

$
&

%

1, if t1py1 ´ x2q § 0,

1 ´
t1py1 ´ x2q

1 ´ t1p1 ´ y1q
, if t1py1 ´ x2q ° 0.

Proof. Since the set r0, 1s
3
on

`
C|B,A|B,B|A _ Bq is totally coherent (Re-

mark 2), it follows that I is also totally coherent. For every precise assessment

P “ px, y, tq P I, we denote by rz
1
P
, z

2
P

s the interval of the coherent extension

of P on C|A, where z
1
P

and z
2
P

coincide with z
1
and z

2
, respectively, as defined

in Theorem 2. Then, ⌃ “
î

PPIrz
1
P
, z

2
P

s “ rz
˚
, z

˚˚
s, where z

˚
“ infPPI z

1
P

and

z
˚˚

“ sup
PPI z

2
P
.

Concerning the computation of z
˚
we distinguish the following alternative cases:

piq t1px1 ` y1 ´ 1q § 0; piiq t1px1 ` y1 ° 1q ° 0. Case piq. By Theorem 2 it holds

that z
1
P

“ 0 for P “ px1, y1, t1q. Thus, tz
1
P
: P P Iu Ö t0u and hence z

˚
“ 0.

Case piiq. We note that the function tpx` y ´ 1q : r0, 1s
3
is nondecreasing in the

arguments x, y, t. Then, tpx` y ´ 1q • t1px1 ` y1 ´ 1q ° 0 for every px, y, tq P I.

Hence by Theorem 2, z
1
P

“
tpx`y´1q
1´tp1´yq for every P P I. Moreover, the function

tpx`y´1q
1´tp1´yq is nondecreasing in the arguments x, y, t over the restricted domain I;

then,
tpx`y´1q
1´tp1´yq •

t1px1`y1´1q
1´t1p1´y1q . Thus, z

˚
“ inftz

1
P

: P P Iu “ inf

!
tpx`y´1q
1´tp1´yq :

px, y, zq P I

)
“

t1px1`y1´1q
1´t1p1´y1q .

Concerning the computation of z
˚˚

we distinguish the following alternative cases:

piq t1py1 ´ x2q § 0; piiq t1py1 ´ x2q ° 0. Case piq. By Theorem 2 it holds that

z
2
P

“ 1 for P “ px2, y1, t1q P I. Thus, tz
2
P
: P P Iu Ö t1u and hence z

˚˚
“ 1.

Case piiq. We observe that tpy ´ xq • t1py ´ xq • t1py1 ´ xq • t1py1 ´ x2q ° 0

for every px, y, tq P I. Then, the condition tpy ´ xq ° 0 is satisfied for ev-

ery P “ px, y, tq P I and hence by Theorem 2, z
2
P

“ 1 ´
tpy´xq

1´tp1´yq for every

P P I. The function 1 ´
tpy´xq

1´tp1´yq is nondecreasing in the argument x and

it is nonincreasing in the arguments y, t over the restricted domain I. Thus,
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1 ´
tpy´xq

1´tp1´yq § 1 ´
tpy´x2q
1´tp1´yq § 1 ´

t1py1´x2q
1´t1p1´y1q for every px, y, tq P I. Then

z
˚˚

“ suptz
2
P
: P P Iu “ sup

!
1 ´

tpy´xq
1´tp1´yq : px, y, zq P I

)
“ 1 ´

t1py1´x2q
1´t1p1´y1q . [\

4 Selected Syllogisms of Figure III

In this section we consider examples of probabilistic categorical syllogisms of

Figure III (Datisi, Darapti, Ferison, Felapton, Disamis, Bocardo) by suitable

instantiations in Theorem 2. We consider three events P,M, S corresponding to

the predicate, middle, and the subject term, respectively.

Datisi. The direct probabilistic interpretation of the categorical syllogism “Ev-
ery M is P , Some M is S, therefore Some S is P” would correspond to infer

ppP |Sq ° 0 from the premises ppP |Mq “ 1 and ppS|Mq ° 0; however, this in-

ference is not justified. Indeed, by Remark 2, a probability assessment p1, y, zq

on pP |M,S|M,P |Sq is coherent for every py, zq P r0, 1s
2
. In order to construct a

probabilistically informative version of Datisi, a further constraint of the premise

set is needed. Based on [16,41] we use ppM |S _ Mq ° 0 as a further constraint

(i.e., our existential import assumption). Then, by instantiating S,M,P in The-

orem 2 for A,B,C with x “ 1, y ° 0 and t ° 0, as tpx ` y ´ 1q “ ty ° 0, it

follows that z
1

“
tpx`y´1q
1´tp1´yq “

ty
1´tp1´yq ° 0. Then,

ppP |Mq “ 1, ppS|Mq ° 0, and ppM |S _ Mq ° 0 ùñ ppP |Sq ° 0 . (7)

Therefore, inference (7) is a probabilistically informative version of Datisi.

Darapti. From (7) it follows that

ppP |Mq “ 1, ppS|Mq “ 1, and ppM |S _ Mq ° 0 ùñ ppP |Sq ° 0 . (8)

which is a probabilistically informative interpretation of Darapti (Every M is P ,
Every M is S, therefore Some S is P ) under the existential import assumption

(ppM |S _ Mq ° 0).

Ferison. By instantiating S,M,P in Theorem 2 for A,B,C with x “ 0, y ° 0

and t ° 0, as tpy ´ xq “ ty ° 0, it follows by Remark 3 that z
2

† 1. Then,

ppP |Mq “ 0, ppS|Mq ° 0, and ppM |S _ Mq ° 0 ùñ ppP |Sq † 1, which can be

rewritten as

pp sP |Mq “ 1, ppS|Mq ° 0, and ppM |S _ Mq ° 0 ùñ pp sP |Sq ° 0 . (9)

Inference (9) is a probabilistically informative version of Ferison (No M is P ,
Some M is S, therefore Some S is not P ) under the existential import.

Felapton. From (9) it follows that

pp sP |Mq “ 1, ppS|Mq “ 1, and ppM |S _ Mq ° 0 ùñ pp sP |Sq ° 0 , (10)

which is a probabilistically informative interpretation of Felapton (No M is P ,
Every M is S, therefore Some S is not P ) under the existential import.
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Disamis. The direct probabilistic interpretation of the categorical syllogism

“Some M is P , Every M is S, therefore Some S is P”. By instantiating S,M,P

for A,B,C in Theorem 2 with x ° 0, y “ 1, and t ° 0, as tpx ` y ´ 1q ° 0, it

follows that z
1

° 0 (see also Remark 3). Then,

ppP |Mq ° 0, ppS|Mq “ 1, and ppM |S _ Mq ° 0 ùñ ppP |Sq ° 0 . (11)

Inference (11) is a probabilistically informative version of Disamis under the

existential import assumption.

Bocardo. By instantiating S,M,P for A,B,C in Theorem 2 with x † 1, y “ 1

and t ° 0, as tpy ´ xq ° 0, it follows that z
2

† 1. Then, ppP |Mq † 1, ppS|Mq “

1, and ppM |S _ Mq ° 0 ùñ ppP |Sq † 1 , which can be rewritten as

pp sP |Mq ° 0, ppS|Mq “ 1, and ppM |S _ Mq ° 0 ùñ pp sP |Sq ° 0 . (12)

Inference (12) is a probabilistically informative version of Bocardo (Some M is
not P , Every M is S, therefore Some S is not P ) under the existential import.

Notice that Bocardo implies Felapton by strengthening the first premise (from

pp sP |Mq ° 0 to pp sP |Mq “ 1).

Remark 4. We recall that ppMq “ ppM ^ pS _ Mqq “ ppM |S _ MqppS _ Mq.

Hence, if we assume that ppMq is positive, then ppM |S _ Mq must be positive

too (the converse, however, does not hold). Therefore, the inferences (7)–(12)

hold if ppM |S _ Mq ° 0 is replaced by ppMq ° 0. The constraint ppMq ° 0 can

be seen as a stronger version of an existential import assumption compared to

the conditional event existential import.

Remark 5. We observe that, traditionally, the conclusions of logically valid cate-

gorical syllogisms of Figure III are neither in the form of sentence type A (every)
nor of E (no). In terms of our probabilistic semantics, we study which assess-

ments px, y, tq on pP |M,S|M,S|S _ Mq propagate to z
1

“ z
2

“ ppP |Sq “ 1 in

order to validate A in the conclusion. According to Theorem 2, the following

conditions should be satisfied

$
&

%

px, y, tq P r0, 1s3, tpx ` y ´ 1q ° 0,

tpx ` y ´ 1q “ 1 ´ tp1 ´ yq,
tpy ´ xq § 0,

ñ

$
&

%

px, y, tq P r0, 1s3,
1 ` yt ´ t ° 0,

tx “ 1, ty § 1,

ñ

$
&

%

x “ 1,

0 † y § 1,

t “ 1.

Then, z
1

“ z
2

“ 1 if and only if px, y, tq “ p1, y, 1q, with y ° 0. However, for

the syllogisms it would be too strong to require t “ 1 as an existential import

assumption, we only require that t ° 0. Similarly, in order to validate E in the

conclusion, it can be shown that assessments px, y, tq on pP |M,S|M,S|S _ Mq

propagate to the conclusion z
1

“ z
2

“ ppP |Sq “ 0 if and only if px, y, tq “

p0, y, 1q, with y ° 0. Therefore, if t is just positive neither A nor E can be

validate within in our probabilistic semantics of Figure III.
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Application to default reasoning. We recall that the default H |s E denotes

the sentence “E is a plausible consequence of H” (see, e.g., [27]). Moreover,

the negated default H |s{ E denotes the sentence “it is not the case, that: E is a
plausible consequence of H”. Based on [16, Definition 8], we interpret the default

H |s E by the probability assessment ppE|Hq “ 1; while the negated default

H |s{ E is interpreted by the imprecise probability assessment ppE|Hq † 1.

Then, as the probability assessment ppE|Hq ° 0 is equivalent to pp sE|Hq † 1,

the negated default H |s{ sE is also interpreted by ppE|Hq ° 0. Table 2 presents

the syllogisms (7)–(12) of Figure III in terms of inference rules which involve

defaults and negated defaults.

AII Datisi from M |s P,M |s{ sS, and pS _ Mq |s{ ÑM infer S |s{ sP
AAI Darapti from M |s P,M |s S, and pS _ Mq |s{ ÑM infer S |s{ sP
EIO Ferison from M |s sP ,M |s{ sS, and pS _ Mq |s{ ÑM infer S |s{ P
EAO Felapton from M |s sP ,M |s S, and pS _ Mq |s{ ÑM infer S |s{ P
IAI Disamis from M |s{ sP ,M |s S, and pS _ Mq |s{ ÑM infer S |s{ sP
OAO Bocardo from M |s{ P,M |s S, and pS _ Mq |s{ ÑM infer S |s{ P

Table 2: Syllogisms of Figure III (see Table 1) in terms of defaults and negated

defaults.

5 Concluding Remarks

In this paper we proved probability propagation rules for Aristotetlian syl-

logisms of Figure III by using an existential import assumption which we

expressed in terms of a probability constraint. Although Aristotelian syllogistics

is an ancient reasoning system, our probabilistic semantics allows for various

applications including applications to (i) rational nonmonotonic reasoning (we

showed how to express basic syllogistic sentence types in terms of defaults

and negated defaults; see also [15,16] for connections between syllogisms

and default reasoning), (ii) the psychology of reasoning as a new rationality

framework (see, e.g., [26,35,36,37,38,42]), (iii) the square of opposition [39,40],

and to (iv) formal semantics: by setting appropriate thresholds in Theorem 3,

we can interpret generalised quantifiers (see, e.g., [33]) probabilistically (like

interpreting Almost all S are P by ppP |Sq • t, where t is a given—usually

context dependent—threshold like ° .9). Resulting probabilistic syllogisms

are a much more plausible rationality framework for studying commonsense

contexts compared to traditional Aristotelian syllogisms. We observe that our

interpretation of syllogisms relies on conditionals. Thus, future work will be

devoted to further generalise Aristotelian syllogisms by iterated conditionals

where the S, M , or P terms are replaced by conditional events. We have shown

in the context of conditional syllogisms [14,44,45], that the theory of conditional

random quantities (see, e.g. [17,18,21,22,23]) is able manage nested conditionals

without running into the notorious Lewis’ triviality. Applying these results will

yield further generalisations of Aristotelian syllogisms.

Acknowledgments. We thank three anonymous referees.
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