Abductive, causal, and counterfactual conditionals under incomplete probabilistic knowledge

Niki PFEIFER

Munich Center for Mathematical Philosophy, LMU Munich, Germany
niki.pfeifer@lmu.de
http://pfeifer.userweb.mwn.de/

Leena TULKKI

Department of Philosophy, History, Culture and Art Studies, University of Helsinki, Finland leena.tulkki@helsinki.fi

Introduction

Probabilistic truth table task in terms of probability logic:

Participants are presented with tasks containing the following premises:

$$
\left\{p(A \wedge C)=x_{1}, p(A \wedge \neg C)=x_{2}, p(\neg A \wedge C)=x_{3}, p(\neg A \wedge \neg C)=x_{4}\right\}
$$

and asked to infer their degree of belief in If A, then C. Based on their responses, the participants' interpretation of the conditional is given by:

Interpretation	Conclusion
Material conditional	$p(A \supset C)=x_{1}+x_{3}+x_{4}$
Conjunction	$p(A \wedge C)=x_{1}$
Biconditional	$p(A \equiv C)=x_{1}+x_{4}$
Biconditional event	$p\left(C\|\mid A)=x_{1} /\left(x_{1}+x_{2}+x_{3}\right)\right.$
Conditional event	$p(C \mid A)=x_{1} /\left(x_{1}+x_{2}\right)$

Observation:

Most people interpret their beliefs in conditionals by $p(C \mid A)$ even if x_{1}, \ldots, x_{4} may be imprecise (Peifer, 2013) and the conditional is formulated as a counterfactual: If A were the case, C would be the case (see, e.g.,

Pfeifer \& Stöckle-Schobel, 2015).

Research questions:

- How do people interpret causal (if cause, then effect) and abductive (if effect, then cause) conditionals?
- Are there response differences if they are formulated as indicative conditionals or as counterfactuals?
- How do people deal with imprecise probabilities?

Method

- Participants: 80 Finnish university students.
- Material: 18 pen and paper tasks.
- Design: 2×2 between participants design:

	Type	Formulation	Sample
Condition 1	non-causal	indicative	$\left(n_{1}=20\right)$
Condition 2	non-causal	counterfactual	$\left(n_{2}=20\right)$
Condition 3	causal	counterfactual	$\left(n_{3}=20\right)$
Condition 4	abductive	counterfactual	$\left(n_{4}=20\right)$

Sample task 1 (non-causal, indicative):

Sample task 2 (causal, counterfactual):

Imagine a patient, who takes Xebutol and view the patient reports again.
Question: How sure you can be, that the following sentence holds? If the patient were to take Zotarin, then this would have no impact on the symptoms.

From a probability logic point of view, sample tasks 1 and 2 are struc tured in the same way and imply the following predictions:

Interpretation	Predictions at least at most	Hidden sides ignored	
\bar{p} (black \| circle)	1 out of 22 out of 2	no	
$p(\text { black } \mid \text { circle })_{\bar{l}}$	1 out of 12 out of 2	lower bound	
p (black circle $^{\bar{u}}$	1 out of 21 out of 1	upper bound	
p (black \mid circle $)_{\overline{l u}}$	1 out of 11 out of 1	upper \& lower bound	
p (circle \wedge black)	1 out of 62 out of 6	no	
$p($ circle \supset black $)$	5 out of 66 out of 6	no	
$p($ circle \equiv black $)$	3 out of 64 out of 6	no	
$p($ circle \|	black)	1 out of 42 out of 4	no

Results

- No significant differences were observed among the four groups.
- Out of all responses 32.1% were consistent with conditional event responses $(\cdot \mid \cdot)$ and 29.9% with conjunction $(\cdot \wedge \cdot)$.
- Three types of half-way strategies related to the conditional probability responses $\left(p(\cdot \mid \cdot)_{\bar{l}}, p(\cdot \mid \cdot)_{\bar{u}}, p(\cdot \mid \cdot)_{\overline{l u}}\right)$ were identified in the tasks with incomplete information. 51.5% of all responses are explained by the combination of the three half-way strategies and the $p(\cdot \mid \cdot)$ responses.
- The experimental results support the conditional probability interpretation of conditionals.

Discussion and concluding remarks

- Imprecise probabilities make the task more complex: half-way conditional event response strategies are used to reduce the cognitive load.
- Why is the belief in a counterfactual evaluated by the corresponding conditional probability? Formally (see, e.g. Gilio \& Sanflippo, 2013),

Conditional probability is the best predictor for how people interpret
\bullet indicative and counterfactual non-causal conditionals, and

- abductive and causal counterfactuals.

Future work will focus on abductive and causal conditionals in indicative mood.

Acknowledgments and references

Financial support by the DFG project PF 740/2-2 (part of SPP1516).

References

Gilio, A., \& Sanfilippo, G. (2013). Conditional random quantities and iterated conditioning in the setting of coherence. In L. C. van der Gaag (Ed.), ECSQARU 2013 (Vol. 7958, pp. 218-229). Berlin,

Pfeifer, N. (2013). The new psychology of
ing \& Reasoning, 19(3-4), 329-345.
feifer, N., \& Stöckle-Schobel, R. (2015). settings. In G Ancertain conditionals and counterfactuals in (non-)causal on cog.sci. (Vol. 1419, pp. 651-656). Aachen: CEUR

