Probability logic, language, and the mind

Niki Pfeifer ${ }^{1}$
${ }^{1}$ Department of Philosophy
University of Regensburg

ESSLLI 2019

Introduction

Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
Inferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks
Nested conditionals
Generalised modus ponens
An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
Existential import
Figure 1: coherent probabilistic syllogisms
Syllogistic sentences as defaults
Concluding remarks
References

Table of contents

Introduction

```
Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
    Inferentialist accounts of conditionals
    Inferentialism and probabilistic truth tables
    Further results from probabilistic truth table tasks
Nested conditionals
    Generalised modus ponens
    An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
    What is argument strength?
    Ellsberg paradox
    Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
    Existential import
    Figure 1: coherent probabilistic syllogisms
    Syllogistic sentences as defaults
```

Concluding remarks

References

Three levels of description (Marr, 1982)

Three levels of description (Marr, 1982)

(photo taken by N. Pfeifer at Black Magic Bar in Rīga)

Three levels of description (Marr, 1982)

- Computational (problem description/task analysis)

Three levels of description (Marr, 1982)

- Computational (problem description/task analysis)
- Algorithmic (representations and processes)

Three levels of description (Marr, 1982)

- Computational (problem description/task analysis)
- Algorithmic (representations and processes)
- Hardware

Mental probability logic (Pfefier, 2006b, 2012a, 2012b, 2013a, 2014; Pfefifer \& Kleiter, 2005)

- Uncertain indicative If A, then C is interpreted as $p(C \mid A)$

Mental probability logic (Pfefefer, 2006b, 2012a, 2012b, 2013a, 2014; Pfefier \& kleiter, 2005)

- Uncertain indicative If A, then C is interpreted as $p(C \mid A)$
- The conditional event $C \mid A$ is partially truth-functional (void, if A is false and undefined, if A is a logical contradiction)

Mental probability logic (Pfeferer, 2006b, 2012a, 2012b, 2013a, 2014; Pfefifer \& kleiter, 2005)

- Uncertain indicative If A, then C is interpreted as $p(C \mid A)$
- The conditional event $C \mid A$ is partially truth-functional (void, if A is false and undefined, if A is a logical contradiction)
- Arguments: 〈premise(s), conclusion 〉

Mental probability logic (Pfeferer, 2006b, 2012a, 2012b, 2013a, 2014; Pfefifer \& kleiter, 2005)

- Uncertain indicative If A, then C is interpreted as $p(C \mid A)$
- The conditional event $C \mid A$ is partially truth-functional (void, if A is false and undefined, if A is a logical contradiction)
- Arguments: 〈 premise(s), conclusion 〉
- Premises contain:
- probabilistic and/or logical information
- background knowledge (if available)

Mental probability logic (Pfeferer, 2006b, 2012a, 2012b, 2013a, 2014; Pfefifer \& kleiter, 2005)

- Uncertain indicative If A, then C is interpreted as $p(C \mid A)$
- The conditional event $C \mid A$ is partially truth-functional (void, if A is false and undefined, if A is a logical contradiction)
- Arguments: 〈 premise(s), conclusion 〉
- Premises contain:
- probabilistic and/or logical information
- background knowledge (if available)
- Key idea: Uncertainty is propagated deductively from the premises to the conclusion

Mental probability logic (Pfeferer, 2006b, 2012a, 2012b, 2013a, 2014; Pfeferer \& kleiter, 2005)

- Uncertain indicative If A, then C is interpreted as $p(C \mid A)$
- The conditional event $C \mid A$ is partially truth-functional (void, if A is false and undefined, if A is a logical contradiction)
- Arguments: 〈 premise(s), conclusion 〉
- Premises contain:
- probabilistic and/or logical information
- background knowledge (if available)
- Key idea: Uncertainty is propagated deductively from the premises to the conclusion
- Rationality framework: coherence based probability logic

Coherence based probability logic

- Coherence
- de Finetti, and \{Coletti, Gilio, Lad, Regazzini, Sanfilippo, Scozzafava, Vantaggi, Walley, ...\}
- degrees of belief
- complete algebra is not required
- many probabilistic approaches define $p(B \mid A)$ by

$$
\frac{p(A \wedge B)}{p(A)} \text { and assume that } \quad p(A)>0
$$

Coherence based probability logic

- Coherence
- de Finetti, and \{Coletti, Gilio, Lad, Regazzini, Sanfilippo, Scozzafava, Vantaggi, Walley, ...\}
- degrees of belief
- complete algebra is not required
- many probabilistic approaches define $p(B \mid A)$ by

$$
\frac{p(A \wedge B)}{p(A)} \text { and assume that } \quad p(A)>0
$$

what if $p(A)=0$?

Coherence based probability logic

- Coherence
- de Finetti, and \{Coletti, Gilio, Lad, Regazzini, Sanfilippo, Scozzafava, Vantaggi, Walley, ...\}
- degrees of belief
- complete algebra is not required
- many probabilistic approaches define $p(B \mid A)$ by

$$
\frac{p(A \wedge B)}{p(A)} \text { and assume that } \quad p(A)>0
$$

what if $p(A)=0$?
in the coherence approach, conditional probability, $p(B \mid A)$, is primitive

- zero probabilities are exploited to reduce the complexity
- imprecision

Coherence based probability logic

- Coherence
- de Finetti, and \{Coletti, Gilio, Lad, Regazzini, Sanfilippo, Scozzafava, Vantaggi, Walley, ...\}
- degrees of belief
- complete algebra is not required
- many probabilistic approaches define $p(B \mid A)$ by

$$
\frac{p(A \wedge B)}{p(A)} \text { and assume that } \quad p(A)>0
$$

what if $p(A)=0$?
in the coherence approach, conditional probability, $p(B \mid A)$, is primitive

- zero probabilities are exploited to reduce the complexity
- imprecision
- Probability logic
- uncertain argument forms
- deductive consequence relation
- propagation of the uncertainties from the premises to the conclusions

Example: Probabilistic modus ponens

$$
\begin{array}{ll}
\frac{\text { (Modus Ponens) }}{\text { If } A, \text { then } C} & \\
A & \\
\hline C & \\
\hline & \frac{p(A)=y}{p y \leq p(C) \leq x y+1-x}
\end{array}
$$

Example: Probabilistic modus ponens

Example: Probabilistic modus ponens

Example: Probabilistic modus ponens

Example: Probabilistic modus ponens

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

$$
P(B)=\underbrace{P(A)}_{x} \underbrace{P(B \mid A)}_{y}+\underbrace{P(\neg A)}_{1-x} \underbrace{P\left(\left.B\right|_{\neg A)}\right.}_{q \in[0,1]}
$$

$$
\begin{gathered}
P(B)=\underbrace{P(A)}_{x} \underbrace{P(B \mid A)}_{y}+\underbrace{P(\neg A)}_{1-x} \underbrace{P\left(\left.B\right|_{\neg A)} ^{P(B)}\right.}_{q \in[0,1]} \\
\underbrace{x y}_{\text {if } q=0} \leq P(B) \leq \underbrace{x y+(1-x)}_{\text {if } q=1}
\end{gathered}
$$

from $P(A)=.7$ and $P(B \mid A)=.9$ infer $P(B)$

$$
\begin{gathered}
P(B)=\underbrace{P(A)}_{.7} \underbrace{P(B \mid A)}_{.9}+\underbrace{P(\neg A)}_{1-.7} \underbrace{P(B \mid \neg A)}_{q \in[0,1]} \\
\underbrace{.63}_{\text {if } q=0} \leq P(B) \leq \underbrace{.93}_{\text {if } q=1}
\end{gathered}
$$

from $P(A)=.9$ and $P(B \mid A)=.7$ infer $P(B)$

$$
\begin{gathered}
P(B)=\underbrace{P(A)}_{.9} \underbrace{P(B \mid A)}_{.7}+\underbrace{P(\neg A)}_{1-.9} \underbrace{P\left(\left.B\right|_{\neg A)}\right.}_{q \in[0,1]} \\
\underbrace{.63}_{\text {if } q=0} \leq P(B) \leq \underbrace{.73}_{\text {if } q=1}
\end{gathered}
$$

Check Coherence software package

... this software is maintained by Andrea Capotorti and is available here (Baioletti et al., 2016):
http://www.dmi.unipg.it/~upkd/paid/software.html

Table of contents

Introduction

Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
Inferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks
Nested conditionals
Generalised modus ponens
An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
Existential import
Figure 1: coherent probabilistic syllogisms
Syllogistic sentences as defaults
Concluding remarks

References

The Tweety problem

The Tweety problem (picture by L. Eving, S. Budig, A. Gerwinski;

```
http://commons.wikimedia.org)
```


The Tweety problem (picture® by ytses19; http://mi9. com/fly ying-tux_ 35455 . htm1)

System P: Rationality postulates for nonmonotonic

 reasoning (Kraus, Lehmann, \& Magidor, 1900)Reflexivity (axiom): $\alpha \mu \alpha$
Left logical equivalence:
from $\vDash \alpha \equiv \beta$ and $\alpha \sim \gamma$ infer $\beta \sim \gamma$
Right weakening:
from $\vDash \alpha \supset \beta$ and $\gamma \downarrow \alpha$ infer $\gamma \mu \beta$
Or: \quad from $\alpha \sim \gamma$ and $\beta ん \gamma$ infer $\alpha \vee \beta ん \gamma$
Cut: \quad from $\alpha \wedge \beta \sim \gamma$ and $\alpha \mu \beta$ infer $\alpha \mu \gamma$
Cautious monotonicity:
from $\alpha \mu \beta$ and $\alpha \mu \gamma$ infer $\alpha \wedge \beta \sim \gamma$
And (derived rule): from $\alpha \mu \beta$ and $\alpha \mu \gamma$ infer $\alpha \mu \beta \wedge \gamma$

System P: Rationality postulates for nonmonotonic

 reasoning (Kraus et al., 1990)Reflexivity (axiom): $\alpha \sim \alpha$
Left logical equivalence:
from $\vDash \alpha \equiv \beta$ and $\alpha \sim \gamma$ infer $\beta \sim \gamma$
Right weakening:
from $\vDash \alpha \supset \beta$ and $\gamma \mu \alpha$ infer $\gamma \mu \beta$
Or: \quad from $\alpha \sim \gamma$ and $\beta ん \gamma$ infer $\alpha \vee \beta ん \gamma$
Cut: \quad from $\alpha \wedge \beta \sim \gamma$ and $\alpha \mu \beta$ infer $\alpha \mu \gamma$
Cautious monotonicity:
from $\alpha \mu \beta$ and $\alpha \mu \gamma$ infer $\alpha \wedge \beta \nsim \gamma$
And (derived rule): from $\alpha \mu \beta$ and $\alpha \sim \gamma$ infer $\alpha \mu \beta \wedge \gamma$

Probabilistic version of System $\mathrm{P}_{\text {(Gilio (2002); Table } 2 \text { Pfeifer and Kleiter (2009)) }}$

Name	Probability logical version
Left logical equivalence	$\vDash\left(E_{1} \equiv E_{2}\right), P\left(E_{3} \mid E_{1}\right)=x \therefore P\left(E_{3} \mid E_{2}\right)=x$
Right weakening	$P\left(E_{1} \mid E_{3}\right)=x, \equiv\left(E_{1} \supset E_{2}\right) \therefore P\left(E_{2} \mid E_{3}\right) \in[x, 1]$
Cut	$P\left(E_{2} \mid E_{1} \wedge E_{3}\right)=x, P\left(E_{1} \mid E_{3}\right)=y$
	$\therefore P\left(E_{2} \mid E_{3}\right) \in[x y, 1-y+x y]$
And	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{1}\right)=y$
	$\therefore P\left(E_{2} \wedge E_{3} \mid E_{1}\right) \in[\max \{0, x+y-1\}, \min \{x, y\}]$
Cautious monotonicity	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{1}\right)=y$
	$\therefore P\left(E_{3} \mid E_{1} \wedge E_{2}\right) \in[\max \{0,(x+y-1) / x\}, \min \{y / x, 1\}]$
Or	$P\left(E_{3} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{2}\right)=y$
	$\therefore P\left(E_{3} \mid E_{1} \vee E_{2}\right) \in[x y \mid(x+y-x y),(x+y-2 x y) /(1-x y)]$
Transitivity	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{2}\right)=y \therefore P\left(E_{3} \mid E_{1}\right) \in[0,1]$
Contraposition	$P\left(E_{2} \mid E_{1}\right)=x \therefore P\left(\neg E_{1} \mid \neg E_{2}\right) \in[0,1]$
Monotonicity	$P\left(E_{3} \mid E_{1}\right)=x \therefore P\left(E_{3} \mid E_{1} \wedge E_{2}\right) \in[0,1]$

Probabilistic version of System $\mathrm{P}_{\text {(Gilio (2002); Table } 2 \text { Pfeifer and Kleiter (2009)) }}$

Name	Probability logical version
Left logical equivalence	$\vDash\left(E_{1} \equiv E_{2}\right), P\left(E_{3} \mid E_{1}\right)=x \therefore P\left(E_{3} \mid E_{2}\right)=x$
Right weakening	$P\left(E_{1} \mid E_{3}\right)=x, \equiv\left(E_{1} \supset E_{2}\right) \therefore P\left(E_{2} \mid E_{3}\right) \in[x, 1]$
Cut	$P\left(E_{2} \mid E_{1} \wedge E_{3}\right)=x, P\left(E_{1} \mid E_{3}\right)=y$
	$\therefore P\left(E_{2} \mid E_{3}\right) \in[x y, 1-y+x y]$
And	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{1}\right)=y$
	$\therefore P\left(E_{2} \wedge E_{3} \mid E_{1}\right) \in[\max \{0, x+y-1\}, \min \{x, y\}]$
Cautious monotonicity	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{1}\right)=y$
	$\therefore P\left(E_{3} \mid E_{1} \wedge E_{2}\right) \in[\max \{0,(x+y-1) / x\}, \min \{y / x, 1\}]$
Or	$P\left(E_{3} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{2}\right)=y$
	$\therefore P\left(E_{3} \mid E_{1} \vee E_{2}\right) \in[x y \mid(x+y-x y),(x+y-2 x y) /(1-x y)]$
Transitivity	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{2}\right)=y \therefore P\left(E_{3} \mid E_{1}\right) \in[0,1]$
Contraposition	$P\left(E_{2} \mid E_{1}\right)=x \therefore P\left(\neg E_{1} \mid \neg E_{2}\right) \in[0,1]$
Monotonicity	$P\left(E_{3} \mid E_{1}\right)=x \therefore P\left(E_{3} \mid E_{1} \wedge E_{2}\right) \in[0,1]$

\ldots where \therefore is deductive

Probabilistic version of System P (Gilio (2002); Table 2 Pfeifer and Kleiter (2009))

Name	Probability logical version
Left logical equivalence	$\vDash\left(E_{1} \equiv E_{2}\right), P\left(E_{3} \mid E_{1}\right)=x \therefore P\left(E_{3} \mid E_{2}\right)=x$
Right weakening	$P\left(E_{1} \mid E_{3}\right)=x, \vDash\left(E_{1} \supset E_{2}\right) \therefore P\left(E_{2} \mid E_{3}\right) \in[x, 1]$
Cut	$P\left(E_{2} \mid E_{1} \wedge E_{3}\right)=x, P\left(E_{1} \mid E_{3}\right)=y$
	$\therefore P\left(E_{2} \mid E_{3}\right) \in[x y, 1-y+x y]$
And	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{1}\right)=y$
Cautious monotonicity	$\therefore P\left(E_{2} \wedge E_{3} \mid E_{1}\right) \in[\max \{0, x+y-1\}, \min \{x, y\}]$
	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{1}\right)=y$
	$\therefore P\left(E_{3} \mid E_{1} \wedge E_{2}\right) \in[\max \{0,(x+y-1) / x\}, \min \{y / x, 1\}]$
	$P\left(E_{3} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{2}\right)=y$
Transitivity	$\therefore P\left(E_{3} \mid E_{1} \vee E_{2}\right) \in[x y /(x+y-x y),(x+y-2 x y) /(1-x y)]$
Contraposition	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{2}\right)=y \therefore P\left(E_{3} \mid E_{1}\right) \in[0,1]$
Monotonicity	$P\left(E_{2} \mid E_{1}\right)=x \therefore P\left(\neg E_{1} \mid \neg E_{2}\right) \in[0,1]$

\ldots where \therefore is deductive
probabilistically non-informative

The Tweety problem (Pfeferer, 2012b)

$\mathfrak{\mathfrak { P } 1} \quad \mathrm{P}[\mathrm{Fly}(x) \mid \operatorname{Bird}(x)]=.95$.
$\mathfrak{F}_{2} 2 \operatorname{Bird}($ Tweety).
$\mathfrak{C}_{1} \quad P[$ Fly(Tweety $\left.)\right]=.95$.
(Birds can normally fly.)
(Tweety is a bird.)
(Tweety can normally fly.)

The Tweety problem (Pfeferer, 2012b)

P1 $P[\operatorname{Fly}(x) \mid \operatorname{Bird}(x)]=.95$.
$\mathfrak{P} 2 \quad$ Bird(Tweety).
$\mathfrak{C}_{1} \quad P[$ Fly(Tweety $\left.)\right]=.95$.
(Birds can normally fly.) (Tweety is a bird.)
(Tweety can normally fly.)
$\mathfrak{P} 3$ Penguin(Tweety). (Tweety is a penguin.)
$\mathfrak{P} 4 \quad P[F l y(x) \mid$ Penguin $(x)]=.01 . \quad$ (Penguins normally can't fly.)
$\mathfrak{P}_{5} \xrightarrow{P[\operatorname{Bird}(x) \mid \text { Penguin }(x)]=.99 . \quad \text { (Penguins are normally birds.) }}$
$\mathfrak{C}_{2} \quad P[$ Fly(Tweety) \mid Bird(Tweety) \wedge Penguin(Tweety) $] \in[0, .01]$. (If Tweety is a bird and a penguin, normally Tweety can't fly.)

The Tweety problem (Pfeferer, 2012b)

```
\Re1 P[Fly(x)|\operatorname{Bird}(x)]=.95. (Birds can normally fly.)
{22
(Tweety is a bird.)
(Tweety can normally fly.)
```

$\mathfrak{P 3}$ Penguin(Tweety).
(Tweety is a penguin.)
$\mathfrak{P} 4 \quad P[$ Fly $(x) \mid$ Penguin $(x)]=.01$.
(Penguins normally can't fly.)
$\mathfrak{P}_{5} \xrightarrow{P[\operatorname{Bird}(x) \mid \text { Penguin }(x)]=.99 . \quad \text { (Penguins are normally birds.) }}$
$\mathfrak{C}_{2} \quad P[$ Fly(Tweety) \mid Bird(Tweety) \wedge Penguin(Tweety) $] \in[0, .01]$. (If Tweety is a bird and a penguin, normally Tweety can't fly.)
The probabilistic modus ponens justifies $\mathfrak{C} 1$ and cautious monotonicity justifies $\mathfrak{C} 2$.

The Tweety problem (Pfeferer, 2012b)

$$
\begin{array}{lll}
\mathfrak{P}_{1} & P[\mathrm{Fly}(x) \mid \operatorname{Bird}(x)]=.95 . & \text { (Birds can normally fly.) } \\
\mathfrak{P}_{2} & \text { Bird(Tweety). } & \text { (Tweety is a bird.) } \\
\mathfrak{C}_{1} & P[F l y(\text { Tweety })]=.95 . & \text { (Tweety can normally fly.) }
\end{array}
$$

$\mathfrak{P 3}$
Penguin(Tweety).
$\mathfrak{P}_{4} P[\operatorname{Fly}(x) \mid$ Penguin $(x)]=.01 . \quad$ (Penguins normally can't fly.)
$\mathfrak{P}_{5} \xrightarrow{P[\operatorname{Bird}(x) \mid \text { Penguin }(x)]=.99 . \quad \text { (Penguins are normally birds.) }}$
$\mathfrak{C}_{2} \underset{P}{ } P[$ Fly(Tweety) \mid Bird(Tweety) \wedge Penguin(Tweety) $] \in[0, .01]$.
(If Tweety is a bird and a penguin, normally Tweety can't fly.)
The probabilistic modus ponens justifies $\mathfrak{C} 1$ and cautious monotonicity justifies $\mathfrak{C} 2$.

Example 1: (Cautious) monotonicity

- In logic
from $A \supset B$ infer $(A \wedge C) \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $0 \leq P(B \mid A \wedge C) \leq 1$

Example 1: (Cautious) monotonicity

- In logic
from $A \supset B$ infer $(A \wedge C) \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $0 \leq P(B \mid A \wedge C) \leq 1$
But: from $P(A \supset B)=x$ infer $x \leq P((A \wedge C) \supset B) \leq 1$

Example 1: (Cautious) monotonicity

- In logic from $A \supset B$ infer $(A \wedge C) \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $0 \leq P(B \mid A \wedge C) \leq 1$
But: from $P(A \supset B)=x$ infer $x \leq P((A \wedge C) \supset B) \leq 1$
- Cautious monotonicity (Gilio, 2002)
from $P(B \mid A)=x$ and $P(C \mid A)=y$
infer $\max (0,(x+y-1) / x) \leq P(C \mid A \wedge B) \leq \min (y / x, 1)$

Example task: Monotonicity (Pfeferer \& kleiter, 2003)

About the guests at a prom we know the following:
exactly 72% wear a black suit.

Example task: Monotonicity (Pfefifer \& keleer: 2003)

About the guests at a prom we know the following:
exactly 72% wear a black suit.

Imagine all the persons of this prom who wear glasses.

How many of the persons wear a black suit, given they are at this prom and wear glasses?

Example task: Cautious monotonicity (Pfefier \& keleer, 2003)

About the guests at a prom we know the following:

> exactly 72% wear a black suit. exactly 63% wear glasses.

Imagine all the persons of this prom who wear glasses.

How many of the persons wear a black suit, given they are at this prom and wear glasses?

Results - Monotonicity (Example Task 1; Pfefier and kleiter (2003))

lower bound responses upper bound responses

$$
\left(n_{1}=20\right)
$$

Results - Cautious monotonicity (Esample Task 1 : Pefiefer and Keteer (2003)

lower bound responses upper bound responses

$$
\left(n_{2}=19\right)
$$

Example 2: Contraposition

- In logic
from $A \supset B$ infer $\neg B \supset \neg A$
from $\neg B \supset \neg A$ infer $A \supset B$

Example 2: Contraposition

- In logic
from $A \supset B$ infer $\neg B \supset \neg A$
from $\neg B \supset \neg A$ infer $A \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $0 \leq P(\neg A \mid \neg B) \leq 1$
from $P(\neg A \mid \neg B)=x$ infer $0 \leq P(B \mid A) \leq 1$

Example 2: Contraposition

- In logic
from $A \supset B$ infer $\neg B \supset \neg A$
from $\neg B \supset \neg A$ infer $A \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $0 \leq P(\neg A \mid \neg B) \leq 1$
from $P(\neg A \mid \neg B)=x$ infer $0 \leq P(B \mid A) \leq 1$
- But

$$
P(A \supset B)=P(\neg B \supset \neg A)
$$

Results Contraposition $\left(n_{1}=40, n_{2}=40\right.$; Pfeifer and Kleiter (2006b))

Affirmative-negated: Lower Bound

Negated-affirmative: Lower Bound

Affirmative-negated: Upper Bound

Negated-affirmative: Upper Bound

Modus tollens vs. Contraposition (Pfeferer, 2014, Studia Logica)

Modus tollens vs. Contraposition (Pefefer, 201, Suwdia Logico)

Modus tollens vs. Contraposition (Pefefer, 201, Suwdia Logice)

$$
\begin{aligned}
& P(B \mid A)=x, \quad P(\neg B)=y \\
& \quad \vDash 0 \leq \theta \leq P(\neg A) \leq 1
\end{aligned}
$$

Modus tollens vs. Contraposition (Pefefer, 201, Suwdia Logice)

$$
\begin{aligned}
& P(B \mid A)=x, \quad P(\neg B)=y \\
& \quad \vDash 0 \leq \theta \leq P(\neg A) \leq 1
\end{aligned}
$$

$$
\begin{gathered}
P(B \mid A)=x \\
\vDash 0 \leq P\left(\left.\neg A\right|_{\neg B) \leq 1}\right.
\end{gathered}
$$

Modus tollens vs. Contraposition (Pefefer, 201, Suwdia Logico)

$\mathfrak{P l}$ If A, then B
$\mathfrak{P} 2$ not- B
\mathfrak{C} not- A

$$
\begin{aligned}
& P(B \mid A)=x, \quad P(\neg B)=y \\
& \quad \vDash 0 \leq \theta \leq P(\neg A) \leq 1
\end{aligned}
$$

the probabilistic modus tollens is probabilistically informative
i.e., x and y constrain $P(\neg A)$
$\mathfrak{P} 1$ If A, then B
\mathfrak{C} If not- B, then not- A

$$
\begin{gathered}
P(B \mid A)=x \\
\vDash 0 \leq P(\neg A \mid \neg B) \leq 1
\end{gathered}
$$

the probabilistic contraposition is probabilistically non-informative i.e., the tightest coherent probability bounds are 0 and 1

Modus tollens vs. Contraposition (Pefefer, 201, Suwdia Logice)

$\mathfrak{P l}$ If A, then B
$\mathfrak{P} 2$ not- B
\mathfrak{C} not- A

$$
\begin{aligned}
& P(B \mid A)=x, \quad P(\neg B)=y \\
& \quad \vDash 0 \leq \theta \leq P(\neg A) \leq 1
\end{aligned}
$$

the probabilistic modus tollens
is probabilistically informative
i.e., x and v donstrain $P(\neg A)$

$$
\begin{array}{ll}
\text { if } x+y \leq 1, & \theta=\frac{1-x-y}{1-y} \\
\text { if } x+y>1, & \theta=\frac{x+y-1}{x}
\end{array}
$$

$\mathfrak{P l}$ If A, then B
\mathfrak{C} If not- B, then not- A

$$
\begin{gathered}
P(B \mid A)=x \\
\vDash 0 \leq P(\neg A \mid \neg B) \leq 1
\end{gathered}
$$

the probabilistic contraposition is probabilistically non-informative i.e., the tightest coherent probability bounds are 0 and 1

Example 3: (Cumulative) transitivity

$$
A \rightarrow B, B \rightarrow C, \text { therefore } A \rightarrow C
$$

Example 3: (Cumulative) transitivity

$$
A \rightarrow B, B \rightarrow C \text {, therefore } A \rightarrow C
$$

Example 3: (Cumulative) transitivity

$$
A \rightarrow B, B \rightarrow C \text {, therefore } A \rightarrow C
$$

Example 3: (Cumulative) transitivity

$A \not B B, B \vdash C$, $A \not C C$

Example 3: (Cumulative) transitivity

$$
A \nsim B, B \nsim C \text {, } A \nsim C
$$

Example 3: (Cumulative) transitivity

$$
A \not B B, B \nsim C \text {, } A \nsim C
$$

Example 3: (Cumulative) transitivity

- Transitivity in logic from $A \supset B$ and $B \supset C$ infer $A \supset C$

Example 3: (Cumulative) transitivity

- Transitivity in logic from $A \supset B$ and $B \supset C$ infer $A \supset C$
- Transitivity in probability logic from $P(B \mid A)=x$ and $P(C \mid B)=y$ infer $P(C \mid A) \in[0,1]$

Example 3: (Cumulative) transitivity

- Transitivity in logic from $A \supset B$ and $B \supset C$ infer $A \supset C$
- Transitivity in probability logic from $P(B \mid A)=x$ and $P(C \mid B)=y$ infer $P(C \mid A) \in[0,1]$
- CUT (CUmulative Transitivity)
from $P(B \mid A)=x$ and $P(C \mid A \wedge B)=y$
infer $P(C \mid A) \in[x y, 1-x+x y]$

Modus ponens as a special case of CUT

CUT (Gilio, 2002):

$$
\begin{gathered}
p(B \mid A)=x \\
p(C \mid A \wedge B)=y \\
\hline x y \leq p(C \mid A) \leq x y+1-x
\end{gathered}
$$

Modus ponens as a special case of CUT

CUT (Gilio, 2002):

$$
\begin{gathered}
p(B \mid A)=x \\
p(C \mid A \wedge B)=y \\
\hline x y \leq p(C \mid A) \leq x y+1-x
\end{gathered}
$$

Let $A \equiv \mathrm{~T}$, then

$$
\begin{gathered}
p(B \mid \top)=x \\
p(C \mid \top \wedge B)=y \\
\hline x y \leq p(C \mid \top) \leq x y+1-x
\end{gathered}
$$

Modus ponens as a special case of CUT

CUT (Gilio, 2002):

$$
\begin{gathered}
p(B \mid A)=x \\
p(C \mid A \wedge B)=y \\
\frac{x y \leq p(C \mid A) \leq x y+1-x}{}
\end{gathered}
$$

Let $A \equiv T$. Since $p(E)={ }_{\operatorname{def}} p(E \mid T)$ and $p(E \wedge T)=p(E)$, we obtain:
Modus ponens:

$$
\begin{gathered}
p(B \quad)=x \\
p(C \mid \quad B)=y \\
\hline x y \leq p(C \quad) \leq x y+1-x
\end{gathered}
$$

Time for a quiz!

Get into your teams!

Each team can share a phone, tablet or laptop.

$$
\begin{aligned}
& \text {...and go to } \\
& \text { kahoot.it }
\end{aligned}
$$

Table of contents

Introduction

Nonmonotonic reasoning

Paradoxes of the material conditional

Probabilistic truth tablesInferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks
Nested conditionalsGeneralised modus ponens
An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
Existential importFigure 1: coherent probabilistic syllogismsSyllogistic sentences as defaults
Concluding remarks
References

Problematic conditional introduction inferences

Paradoxes of the material conditional, e.g.,

$$
\begin{array}{cc}
\text { (Paradox 1) } & \begin{array}{c}
\text { (Paradox 2) } \\
\text { If } A, \text { then } B
\end{array} \\
& \text { If } A, \text { then } B
\end{array}
$$

Problematic conditional introduction inferences

Paradoxes of the material conditional, e.g.,
(Paradox 1) (Paradox 2)
$\frac{B}{\text { If } A, \text { then } B}$
(Paradox 1)
(Paradox 2)
$\frac{B}{A \supset B}$

Problematic conditional introduction inferences

Paradoxes of the material conditional, e.g.,

$$
\begin{gathered}
\text { (Paradox 1) } \\
P(B)=x
\end{gathered} \begin{gathered}
(\text { Paradox 2) } \\
P(\neg A)=x \\
\hline x \leq P(A \supset B) \leq 1
\end{gathered} \frac{P x \leq P(A \supset B) \leq 1}{1-x \leq}
$$

probabilistically informative

Problematic conditional introduction inferences

Paradoxes of the material conditional, e.g.,

$$
\begin{gathered}
\text { (Paradox 1) } \\
P(B)=x
\end{gathered} \begin{gathered}
(\text { Paradox 2) } \\
P(\neg A)=x \\
\hline x \leq P(A \supset B) \leq 1
\end{gathered} \frac{P \leq P(A \supset B) \leq 1}{1-x \leq P(A)}
$$

probabilistically informative

Problematic conditional introduction inferences (Pefefer 2014)

Paradoxes of the material conditional, e.g.,

> | (Paradox 1) | $\begin{array}{c}\text { (Paradox 2) } \\ P(B)=x\end{array}$ |
| :---: | :---: |
| | $\frac{P(\neg A)=x}{0 \leq P(B \mid A) \leq 1}$ |
| $0 \leq P(B) \leq 1$ | |

probabilistically non-informative

Problematic conditional introduction inferences (Pefefer 2014)

Paradoxes of the material conditional, e.g.,

> | (Paradox 1) | |
| :---: | :---: |
| $\frac{(\text { Paradox 2) }}{P(B)=x}$ | $P(\neg A)=x$
 $0 \leq P(B \mid A) \leq 1$ |
| $0 \leq P(B \mid A) \leq 1$ | |

probabilistically non-informative
This matches the data (Pfeifer \& Kleiter, 2011).

Problematic conditional introduction inferences (Pfeferer, 2014)

Paradoxes of the material conditional, e.g.,

> | (Paradox 1) | $\begin{array}{c}\text { (Paradox 2) } \\ P(B)=x\end{array}$ |
| :---: | :---: |
| $0 \leq P(B \mid A) \leq 1$ | $P(\neg A)=x$ |
| $0 \leq P(B \mid A) \leq 1$ | |

probabilistically non-informative
This matches the data (Pfeifer \& Kleiter, 2011).

Paradox 1: Special case covered in the coherence approach, but not covered in the standard approach to probability:
If $P(B)=1$, then $P(A \wedge B)=P(A)$.

Problematic conditional introduction inferences (Pfeferer, 2014)

Paradoxes of the material conditional, e.g.,

> | (Paradox 1) | $\begin{array}{c}\text { (Paradox 2) } \\ P(B)=x\end{array}$ |
| :---: | :---: |
| | $\frac{P(\neg A)=x}{0 \leq P(B \mid A) \leq 1}$ |

probabilistically non-informative
This matches the data (Pfeifer \& Kleiter, 2011).

Paradox 1: Special case covered in the coherence approach, but not covered in the standard approach to probability:
If $P(B)=1$, then $P(A \wedge B)=P(A)$. Thus, $P(B \mid A)=\frac{P(A \wedge B)}{P(A)}=\frac{P(A)}{P(A)}=1$, if

$$
P(A)>0 .
$$

Inf. versions of the paradoxes (Pefefer, 2014)

From $\operatorname{Pr}(B)=1$ and $A \wedge B \equiv \perp$ infer $\operatorname{Pr}(B \mid A)=0$ is coherent.

Inf. versions of the paradoxes (Pefefer, 2014)

From $\operatorname{Pr}(B)=1$ and $A \wedge B \equiv \perp$ infer $\operatorname{Pr}(B \mid A)=0$ is coherent.

From $\operatorname{Pr}(B)=1$ and $A \supset B \equiv \top$ infer $\operatorname{Pr}(B \mid A)=1$ is coherent.

Inf. versions of the paradoxes (Pfeferer, 2014)

From $\operatorname{Pr}(B)=1$ and $A \wedge B \equiv \perp$ infer $\operatorname{Pr}(B \mid A)=0$ is coherent.

From $\operatorname{Pr}(B)=1$ and $A \supset B \equiv \top$ infer $\operatorname{Pr}(B \mid A)=1$ is coherent.

$$
\begin{gathered}
\text { From } \operatorname{Pr}(B)=x \text { and } \operatorname{Pr}(A)=y \text { infer } \\
\max \left\{0, \frac{x+y-1}{y}\right\} \leqslant \operatorname{Pr}(B \mid A) \leqslant \min \left\{\frac{x}{y}, 1\right\} \text { is coherent. }
\end{gathered}
$$

Inf. versions of the paradoxes (Pfefere, 2014)

From $\operatorname{Pr}(B)=1$ and $A \wedge B \equiv \perp$ infer $\operatorname{Pr}(B \mid A)=0$ is coherent.

From $\operatorname{Pr}(B)=1$ and $A \supset B \equiv \top$ infer $\operatorname{Pr}(B \mid A)=1$ is coherent.

$$
\begin{gathered}
\text { From } \operatorname{Pr}(B)=x \text { and } \operatorname{Pr}(A)=y \text { infer } \\
\max \left\{0, \frac{x+y-1}{y}\right\} \leqslant \operatorname{Pr}(B \mid A) \leqslant \min \left\{\frac{x}{y}, 1\right\} \text { is coherent. }
\end{gathered}
$$

... a special case of the cautious monotonicity rule of System P (Gilio, 2002).

Table of contents

```
Introduction
Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
    Inferentialist accounts of conditionals
    Inferentialism and probabilistic truth tables
    Further results from probabilistic truth table tasks
Nested conditionals
    Generalised modus ponens
    An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
    What is argument strength?
    Ellsberg paradox
    Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
    Existential import
    Figure 1: coherent probabilistic syllogisms
    Syllogistic sentences as defaults
Concluding remarks
References
```


Probabilistic truth table task (Evans, tundere, \& Over, 2003; Oberater \& Wiliem, 2003)

$$
\begin{aligned}
P(A \wedge C) & =x_{1} \\
P(A \wedge \neg C) & =x_{2} \\
P(\neg A \wedge C) & =x_{3} \\
P(\neg A \wedge \neg C) & =x_{4} \\
\hline P(\text { If } A, \text { then } C) & =?
\end{aligned}
$$

Probabilistic truth table task (Eswnse eti., 2003; Oberauer \& Wiriem, 2003)

$$
\begin{aligned}
P(A \wedge C) & =x_{1} \\
P(A \wedge \neg C) & =x_{2} \\
P(\neg A \wedge C) & =x_{3} \\
P(\neg A \wedge \neg C) & =x_{4} \\
\hline P(\text { If } A, \text { then } C) & =?
\end{aligned}
$$

Conclusion candidates:

- $P(A \wedge C)=x_{1}$
- $P(C \mid A)=x_{1} /\left(x_{1}+x_{2}\right)$
- $P(A \supset C)=x_{1}+x_{3}+x_{4}$

Probabilistic truth table task (Evanse et at, 2003; Oberauer \& Wiliem, 2003)

$$
\begin{aligned}
P(A \wedge C) & =x_{1}=.25 \\
P(A \wedge \neg C) & =x_{2}=.25 \\
P(\neg A \wedge C) & =x_{3}=.25 \\
P(\neg A \wedge \neg C) & =x_{4}=.25 \\
\hline P(\text { If } A, \text { then } C) & =?
\end{aligned}
$$

Conclusion candidates:

- $P(A \wedge C)=x_{1}$
- $P(C \mid A)=x_{1} /\left(x_{1}+x_{2}\right)$
- $P(A \supset C)=x_{1}+x_{3}+x_{4}$

Probabilistic truth table task (Evanse et at, 2003; Oberauer \& Wiliem, 2003)

$$
\begin{aligned}
P(A \wedge C) & =x_{1}=.25 \\
P(A \wedge \neg C) & =x_{2}=.25 \\
P(\neg A \wedge C) & =x_{3}=.25 \\
P(\neg A \wedge \neg C) & =x_{4}=.25 \\
\hline P(\text { If } A, \text { then } C) & =?
\end{aligned}
$$

Conclusion candidates:

- $P(A \wedge C)=x_{1}=.25$
- $P(C \mid A)=x_{1} /\left(x_{1}+x_{2}\right)=.50$
- $P(A \supset C)=x_{1}+x_{3}+x_{4}=.75$

Probabilistic truth table task (Evans etal. 2003; Obeaner \& Winiem, 2033)

$$
\begin{aligned}
P(A \wedge C) & =x_{1} \\
P(A \wedge \neg C) & =x_{2} \\
P(\neg A \wedge C) & =x_{3} \\
P(\neg A \wedge \neg C) & =x_{4} \\
\hline P(\text { If } A, \text { then } C) & =?
\end{aligned}
$$

Main results:

- More than half of the responses are consistent with $P(C \mid A)$
- Many responses are consistent with $P(A \wedge C)$

Probabilistic truth table task (Evanse et at. 2003; Oberater \& Wiliem, 2003)

$$
\begin{aligned}
P(A \wedge C) & =x_{1} \\
P(A \wedge \neg C) & =x_{2} \\
P(\neg A \wedge C) & =x_{3} \\
P(\neg A \wedge \neg C) & =x_{4} \\
\hline P(\text { If } A, \text { then } C) & =?
\end{aligned}
$$

Main results:

- More than half of the responses are consistent with $P(C \mid A)$
- Many responses are consistent with $P(A \wedge C)$
- Generalized version: Interpretation shifts to $P(C \mid A)$
(Fugard, Pfeifer, Mayerhofer, \& Kleiter, 2011, Journal of Experimental Psychology: LMC)

Probabilistic truth table task (Evanse et at. 2003; Oberater \& Wiliem, 2003)

$$
\begin{aligned}
P(A \wedge C) & =x_{1} \\
P(A \wedge \neg C) & =x_{2} \\
P(\neg A \wedge C) & =x_{3} \\
P(\neg A \wedge \neg C) & =x_{4} \\
\hline P(\text { If } A, \text { then } C) & =?
\end{aligned}
$$

Main results:

- More than half of the responses are consistent with $P(C \mid A)$
- Many responses are consistent with $P(A \wedge C)$
- Generalized version: Interpretation shifts to $P(C \mid A)$
(Fugard, Pfeifer, Mayerhofer, \& Kleiter, 2011, Journal of Experimental Psychology: LMC)
Key feature:
- Reasoning under complete probabilistic knowledge

Experiment

Motivation

- probabilistic truth table task with incomplete probabilistic knowledge
- Is the conditional event interpretation still dominant?
- Are there shifts of interpretation?

Example: Task 5 (Pfeifer, 2013a, Thinking \& Reasooning)

Illustrated here are all sides of a six-sided die. The sides have two
properties: a color (black or white) and a shape (circle, triangle, or square). Question marks indicate covered sides.

Example: Task 5 (Pfeifer, 2013a, Thinking \& Reasooning)

Illustrated here are all sides of a six-sided die. The sides have two properties: a color (black or white) and a shape (circle, triangle, or square). Question marks indicate covered sides.

Imagine that this die is placed in a cup. Then the cup is randomly shaken. Finally, the cup is placed on the table so that you cannot see what side of the die shows up.

Example: Task 5 (Pfeifer, 2013a, Thinking \& Reasooning)

Illustrated here are all sides of a six-sided die. The sides have two properties: a color (black or white) and a shape (circle, triangle, or square). Question marks indicate covered sides.

Imagine that this die is placed in a cup. Then the cup is randomly shaken. Finally, the cup is placed on the table so that you cannot see what side of the die shows up.
Question: How sure can you be that the following sentence holds?
If the side facing up shows white, then the side shows a square.

Example: Task 5 (Pfeifer, 2013a, Thinking \& Reasoning)

Illustrated here are all sides of a six-sided die. The sides have two properties: a color (black or white) and a shape (circle, triangle, or square). Question marks indicate covered sides.

Imagine that this die is placed in a cup. Then the cup is randomly shaken. Finally, the cup is placed on the table so that you cannot see what side of the die shows up.
Question: How sure can you be that the following sentence holds?
If the side facing up shows white, then the side shows a square.

Answer:

at least

at most

(please tick the appropriate boxes)

Example: Task 5 (Pfeifer, 2013a, Thinking \& Reasoning)

Illustrated here are all sides of a six-sided die. The sides have two properties: a color (black or white) and a shape (circle, triangle, or square). Question marks indicate covered sides.

Imagine that this die is placed in a cup. Then the cup is randomly shaken. Finally, the cup is placed on the table so that you cannot see what side of the die shows up.
Question: How sure can you be that the following sentence holds?
If the side facing up shows white, then the side shows a square.
Answer: Cond. event: at least 1 out of 5 and at most 3 out of 5
at least

at most

(please tick the appropriate boxes)

Example: Task 5 (Pfeifer, 2013a, Thinking \& Reasoning)

Illustrated here are all sides of a six-sided die. The sides have two properties: a color (black or white) and a shape (circle, triangle, or square). Question marks indicate covered sides.

Imagine that this die is placed in a cup. Then the cup is randomly shaken. Finally, the cup is placed on the table so that you cannot see what side of the die shows up.
Question: How sure can you be that the following sentence holds?
If the side facing up shows white, then the side shows a square.
Answer: Conjunction: at least 1 out of 6 and at most 3 out of 6
at least

at most

(please tick the appropriate boxes)

Example: Task 5 (Pfeifer, 2013a, Thinking \& Reasoning)

Illustrated here are all sides of a six-sided die. The sides have two properties: a color (black or white) and a shape (circle, triangle, or square). Question marks indicate covered sides.

Imagine that this die is placed in a cup. Then the cup is randomly shaken. Finally, the cup is placed on the table so that you cannot see what side of the die shows up.
Question: How sure can you be that the following sentence holds?
If the side facing up shows white, then the side shows a square.
Answer: Mat. cond.: at least 2 out of 6 and at most 4 out of 6
at least

at most

(please tick the appropriate boxes)

Experiment (Pfeifer, 2013a, Thinking \& Reasoning)

Set-up

- 20 tasks, three "warming-up tasks"
- all tasks differentiate between material conditional, conjunction, and conditional event interpretation

Experiment (Pfeifer, 2013a, Thinking \& Reasoning)

Set-up

- 20 tasks, three "warming-up tasks"
- all tasks differentiate between material conditional, conjunction, and conditional event interpretation
Sample
- 20 Cambridge University students
- 10 female, 10 male
- between 18 and 27 years old (mean: 21.65)
- no students of mathematics, philosophy, computer science, or psychology

Experiment (Pfeifer, 2013a, Thinking \& Reasoning)

Set-up

- 20 tasks, three "warming-up tasks"
- all tasks differentiate between material conditional, conjunction, and conditional event interpretation
Results
- Overall (340 interval responses)
- 65.6% consistent with conditional event
- 5.6% consistent with conjunction
- 0.3% consistent with material conditional

Experiment (Pfeifer, 2013a, Thinking \& Reasoning)

Set-up

- 20 tasks, three "warming-up tasks"
- all tasks differentiate between material conditional, conjunction, and conditional event interpretation
Results
- Overall (340 interval responses)
- 65.6% consistent with conditional event
- 5.6% consistent with conjunction
- 0.3% consistent with material conditional
- Shift of interpretation
- First three tasks: 38.3% consistent with conditional event
- Last three tasks: 83.3% consistent with conditional event
- Strong correlation between conditional event frequency and item position ($r(15)=0.71, p<0.005$)

Increase of cond. event resp. $\left(n_{1}=20\right)$ (Pfeferer 2013, Thimikng\& Resesonings)

Beyond "abstract" indicative conditionals

Experimental design (Pfeifer \& Tulkki, 2017):

	indicative	counterfactual
non-causal	$n_{1}=20$	$n_{2}=20$
causal	$n_{3}=20$	$n_{4}=20$
abductive	$n_{5}=20$	$n_{6}=20$

Sample task: non-causal, indicative (Pfeferer \& Tukki, 2017)

Below are illustrated all the sides of a six-sided die. The sides of the die have two kinds of properties: color (black or white) and figure (circle, triangle or square). Question mark means a covered side.

Imagine, that this die is placed in a cup. Then the cup is shaken randomly. Finally, the cup is placed on a table upside down, so that you cannot see which side of the die is facing upwards.

Question: How sure you can be, that the following sentence holds?
If the figure on the upward facing side of the die is a circle, then the figure is black.
Answer:
at least
at most
 how many out of how many

Sample task: causal, counterfactual (Pfefier \& Tukki, 2017)

Here you see patient reports from medical studies concerning three new drugs. Each patient report shows the name of the new drug (Zotarin, Xebutol or Raverat) and its impact (diminishing symptoms or no impact on symptoms).
Question mark means a covered report.
\(\left.\left.\left.\left.\left.$$
\begin{array}{|c|c|c|}\hline \text { Zotarin } \\
\text { no impact } \\
\text { on symptoms }\end{array}
$$\right] $$
\begin{array}{c}\text { Xebutol } \\
\text { no impact } \\
\text { on symptoms }\end{array}
$$\right] $$
\begin{array}{c}\text { Xebutol } \\
\text { no impact } \\
\text { on symptoms }\end{array}
$$\right] $$
\begin{array}{c}\text { Xebutol } \\
\text { diminishes } \\
\text { symptoms }\end{array}
$$\right] \begin{array}{c}Xebutol

diminishes

symptoms\end{array}\right]\)| $?$ |
| :--- |

Imagine a patient, who takes Xebutol and view the patient reports again.

Question: How sure you can be, that the following sentence holds?
If the patient were to take Zotarin, then this would have no impact on the symptoms.

counterfactual
 = subjunctive mood + factual statement ("who takes Xebutol")

Inferentialism and Δp

Inferentialist accounts of conditionals claim that there must be some inferential connection between the antecedent and the consequent of a conditional in order to assert it (see, e.g., Douven, 2016;

Douven, Elqayam, Singmannc, \& van Wijnbergen-Huitink, 2018; Skovgaard-Olsen, Singmann, \& Klauer, 2016).

Inferentialism and Δp

Inferentialist accounts of conditionals claim that there must be some inferential connection between the antecedent and the consequent of a conditional in order to assert it (see, e.g., Douven, 2016; Douven et al., 2018;

Skovgaard-Olsen et al., 2016).
The strength of the inferential connection (or "relevance") can be measured by Δp :

$$
\Delta p(\text { If } A, \text { then } C)=\operatorname{def.} p(C \mid A)-p(C \mid \neg A)
$$

Inferentialism and Δp

Inferentialist accounts of conditionals claim that there must be some inferential connection between the antecedent and the consequent of a conditional in order to assert it (see, e.g., Douven, 2016; Douven et al., 2018;

Skovgaard-Olsen et al., 2016).
The strength of the inferential connection (or "relevance") can be measured by Δp :

$$
\Delta p(\text { If } A, \text { then } C)={ }_{\text {def. }} p(C \mid A)-p(C \mid \neg A)
$$

- positive relevance/strong inferential connection when $\Delta p>0$
- irrelevance/no inferential connection when $\Delta p=0$
- negative relevance/no inferential connection when $\Delta p<0$

Inferentialism and Δp

Inferentialist accounts of conditionals claim that there must be some inferential connection between the antecedent and the consequent of a conditional in order to assert it (see, e.g., Douven, 2016; Douven et al., 2018;

Skovgaard-Olsen et al., 2016).
The strength of the inferential connection (or "relevance") can be measured by Δp :

$$
\Delta p(\text { If } A, \text { then } C)={ }_{\text {def. }} p(C \mid A)-p(C \mid \neg A)
$$

- positive relevance/strong inferential connection when $\Delta p>0$
- irrelevance/no inferential connection when $\Delta p=0$
- negative relevance/no inferential connection when $\Delta p<0$

Sample where Δp is violated (Pefiere \& Tunki, 2017, in peep.)

Alla on kuvattuna kaikki kyljet kuusikylkisestä nopasta. Kylkien kuvioissa on kahdenlaisia ominaisuuksia: väri (musta tai valkoinen) ja muoto (ympyrä, kolmio, tai neliö).

Kuvittele, että tämä noppa laitetaan kuppiin. Tämän jälkeen kuppia ravistellaan sattumanvaraisesti. Lopuksi kuppi asetetaan pöydälle nurinpäin siten, että et voi nähdä mikä nopan kyljistä osoittaa ylöspäin.

Kysymys: Kuinka varma voit olla siitä, että seuraava lause pitää paikkansa?

If
square, then
white
Jos ylöspäin osoittavan kyljen kuvio on neliö, niin tämä kuvio on valkoinen.

$$
\underbrace{p(\text { white } \mid \text { square })}_{3 / 5}-\underbrace{p(\text { white } \mid \neg \text { square })}_{1 / 1}=-2 / 5<0
$$

What is Δp in the context of incomplete probabilistic information?

If the figure on the upward facing side of the die is a circle, then the figure is black.

What is Δp in the context of incomplete probabilistic information?

If the figure on the upward facing side of the die is a circle, then the figure is black.

$$
1 / 2 \leq p(\text { black } \mid \text { circle }) \leq 2 / 2
$$

What is Δp in the context of incomplete probabilistic information?

If the figure on the upward facing side of the die is a circle, then the figure is black.

$$
\begin{aligned}
& 1 / 2 \leq p(\text { black } \mid \text { circle }) \leq 2 / 2 \\
& 2 / 5 \leq p(\text { black } \mid \neg \text { circle }) \leq 3 / 5
\end{aligned}
$$

What is Δp in the context of incomplete probabilistic information?

If the figure on the upward facing side of the die is a circle, then the figure is black.

$$
\begin{aligned}
& 1 / 2 \leq p(\text { black } \mid \text { circle }) \leq 2 / 2 \\
& 2 / 5 \leq p(\text { black } \mid \neg \text { circle }) \leq 3 / 5
\end{aligned}
$$

The symbol of the covered card may be any one of four possibilities!

What is Δp in the context of incomplete probabilistic information?

Possibility \#1:

If the figure on the upward facing side of the die is a circle, then the figure is black.

$$
\Delta p_{\text {possibility } \# 1}=\underbrace{p(\text { black } \mid \text { circle })}_{1 / 1}-\underbrace{p(\text { black } \mid \neg \text { circle })}_{2 / 5}=3 / 5>0
$$

What is Δp in the context of incomplete probabilistic information?

Possibility \#2:

If the figure on the upward facing side of the die is a circle, then the figure is black.

$$
\Delta p_{\text {possibility } \# 2}=\underbrace{p(\text { black } \mid \text { circle })}_{1 / 1}-\underbrace{p(\text { black } \mid \neg \text { circle })}_{3 / 5}=2 / 5>0
$$

What is Δp in the context of incomplete probabilistic information?

Possibility \#3:

If the figure on the upward facing side of the die is a circle, then the figure is black.

$$
\Delta p_{\text {possibility } \# 3}=\underbrace{p(\text { black } \mid \text { circle })}_{2 / 2}-\underbrace{p(\text { black } \mid \neg \text { circle })}_{2 / 4}=1 / 2>0
$$

What is Δp in the context of incomplete probabilistic information?

Possibility \#4:

If the figure on the upward facing side of the die is a circle, then the figure is black.

$$
\Delta p_{\text {possibility } \# 4}=\underbrace{p(\text { black } \mid \text { circle })}_{1 / 2}-\underbrace{p(\text { black } \mid \neg \text { circle })}_{2 / 4}=0
$$

Sample Δp-values

task	\# ?-info	possible Δp values
T3	1	$0.0,0.4,0.5,0.6$

Sample Δp-values

task	\# ?-info	possible Δp values
T3	1	$0.0,0.4,0.5,0.6$
T4	3	$-1.8,-1.5,-1.3,-1.2,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8$,
		$-0.7,-0.7,-0.7,-0.6,-0.6,-0.5,-0.5,-0.5,-0.4,-0.4$,
		$-0.4,-0.4,-0.4,-0.4,-0.3,-0.3,-0.3,-0.3,-0.3,-0.3$,
		$-0.3,-0.3,-0.3,-0.3,-0.3,-0.2,-0.2,-0.2,-0.2,-0.2$,
		$-0.2,-0.2,-0.2,-0.2,-0.1,-0.1,0.0,0.0,0.0,0.0,0.0$,
		$0.0,0.0,0.0,0.0,0.1,0.1,0.2,0.2,0.3,0.3,0.3,0.3$,
		0.5

	T1	T2	T3	T4	T5	T6
\# ?-info	0	0	1	3	1	1
\# Δp-values	1	1	4	64	4	4
Mean	-0.40	0.50	0.38	-0.32	0.44	0.27
SD	-	-	0.26	0.42	0.18	0.21
Min	-	-	0.00	-1.75	0.25	0.00
Max	-	-	0.60	0.50	0.67	0.50
$\% \Delta p>0$	0	100	75	14	100	75
$\% \Delta p=0$	0	0	25	14	0	25
$\% \Delta p<0$	100	0	0	72	0	0
	T7	T8	T9			
\# ?-info	3	2	3			
\# Δp-values	64	16	64			
Mean	-0.11	0.22	-0.01			
SD	0.40	0.22	0.46			
Min	-1.17	-0.17	-1.50			
Max	0.83	0.60	0.83			
$\% \Delta p>0$	33	81	47			
$\% \Delta p=0$	12	0	17			
$\% \Delta p<0$	55	19	36			

Results: responses in percentages $(N=120)$ (Pefiefer \& דulkti 2017)

Interpretation	T1	T2	T3	T4	T5	T6	
$[p(\cdot \cdot)]$	$[48]$	$[52]$	$[15]$	$[16]$	$[23]$	$[24]$	
$\left[p(\cdot \mid \cdot)_{\bar{I}}\right]$	$[--]$	$[--]$	$[8]$	$[13]$	$[17]$	$[12]$	
$\left[p(\cdot \cdot)_{\bar{U}}\right]$	$[--]$	$[--]$	$[19]$	$[8]$	$[11]$	$[10]$	
$\left[p(\cdot \cdot)_{I U}\right]$	$[--]$	$[--]$	$[1]$	$[3]$	$[2]$	$[1]$	
Grouped $p(\cdot \mid \cdot)$	48	52	43	40	53	47	
$p(\cdot \wedge \cdot)$	23	27	34	41	36	32	
$p(\cdot \supset \cdot)$	2	0	0	0	0	1	
$p(\cdot \equiv \cdot)$	$[--]$	$[--]$	1	$[--]$	$[--]$	0	
$p(\cdot \\| \cdot)$	$[--]$	$[--]$	2	$[--]$	$[--]$	0	
Other	27	22	21	19	12	21	

Results: responses in percentages $(N=120)$ (Peefere \& דuwki, 2017)

Interpretation	T1	T2	T3	T4	T5	T6	
$[p(\cdot \mid \cdot)]$	$[48]$	$[52]$	$[15]$	$[16]$	$[23]$	$[24]$	
$\left[p(\cdot \cdot)_{\bar{\prime}}\right]$	$[--]$	$[--]$	$[8]$	$[13]$	$[17]$	$[12]$	
$\left[p(\cdot \cdot)_{\bar{u}}\right]$	$[--]$	$[--]$	$[19]$	$[8]$	$[11]$	$[10]$	
$\left[p(\cdot \cdot)_{T u}\right]$	$[--]$	$[--]$	$[1]$	$[3]$	$[2]$	$[1]$	
Grouped $p(\cdot \mid \cdot)$	48	52	43	40	53	47	
$p(\cdot \wedge \cdot)$	23	27	34	41	36	32	
$p(\cdot J \cdot)$	2	0	0	0	0	1	
$p(\cdot \equiv \cdot)$	$[--]$	$[--]$	1	$[--]$	$[--]$	0	
$p(\cdot \\| \cdot)$	$[--]$	$[--]$	2	$[--]$	$[--]$	0	
Other	27	22	21	19	12	21	
$\% \Delta p>0$	0	100	75	14	100	75	

Results: responses in percentages $(N=120)$ (Pefiefer \& דulkti 2017)

Interpretation	T 7	T 8	T 9	T 10	T11	T12	
$[p(\cdot \cdot \cdot)]$	$[23]$	$[27]$	$[25]$	$[55]$	$[56]$	$[29]$	
$\left[p(\cdot \cdot \cdot)_{\bar{T}}\right]$	$[10]$	$[13]$	$[9]$	$[--]$	$[--]$	$[10]$	
$\left[p(\cdot \cdot \cdot)_{\bar{u}}\right]$	$[15]$	$[7]$	$[9]$	$[--]$	$[--]$	$[18]$	
$\left[p(\cdot \cdot \cdot)_{\bar{\prime}}\right]$	$[0]$	$[0]$	$[0]$	$[--]$	$[--]$	$[0]$	
Grouped $p(\cdot \cdot \cdot)$	48	46	43	55	56	58	
$p(\cdot \wedge \cdot)$	33	31	33	28	28	30	
$p(\cdot \cdot \cdot)$	0	0	0	1	0	0	
$p(\cdot=\cdot)$	$[--]$	$[--]$	$[--]$	$[--]$	$[--]$	0	
$p(\cdot \\| \cdot)$	$[--]$	$[--]$	$[--]$	$[--]$	$[--]$	1	
Other	18	23	23	17	17	12	

Results: responses in percentages $(N=120)$ (Peefere \& דuwki, 2017)

Interpretation	T7	T8	T9	T10	T11	T12	
$[p(\cdot \cdot)]$	$[23]$	$[27]$	$[25]$	$[55]$	$[56]$	$[29]$	
$\left[p(\cdot \cdot \cdot)_{\bar{I}}\right]$	$[10]$	$[13]$	$[9]$	$[--]$	$[--]$	$[10]$	
$\left[p(\cdot \cdot)_{\bar{u}}\right]$	$[15]$	$[7]$	$[9]$	$[--]$	$[--]$	$[18]$	
$\left[p(\cdot \cdot)_{\bar{I}}\right]$	$[0]$	$[0]$	$[0]$	$[--]$	$[--]$	$[0]$	
Grouped $p(\cdot \cdot)$	48	46	43	55	56	58	
$p(\cdot \wedge \cdot)$	33	31	33	28	28	30	
$p(\cdot \supset \cdot)$	0	0	0	1	0	0	
$p(\cdot \equiv \cdot)$	$[--]$	$[--]$	$[--]$	$[--]$	$[--]$	0	
$p(\cdot \\| \cdot)$	$[--]$	$[--]$	$[--]$	$[--]$	$[--]$	1	
Other	18	23	23	17	17	12	
$\% \Delta p>0$	33	81	47	0	100	75	

Results: responses in percentages $(N=120)$ (Pefifer \& Tulkti; 2017)

Interpretation	T13	T14	T15	T16	T17	T18	
[$p(\cdot \cdot)$]	[35]	[35]	[30]	[28]	[32]	[31]	
$\left[p(\cdot \mid \cdot)_{T}\right]$	[9]	[13]	[14]	[13]	[17]	[14]	
$\left[p(\cdot \mid)_{\bar{U}}\right]$	[9]	[8]	[11]	[13]	[7]	[10]	
$\left[p(\cdot \mid \cdot)_{\bar{T}}\right]$	[0]	[0]	[1]	[2]	[0]	[0]	
Grouped $p(\cdot \cdot)$	53	56	56	54	55	55	
$p(\cdot \wedge \cdot)$	29	30	28	32	26	29	
$p(\cdot \supset \cdot)$	0	0	0	0	0	0	
$p(\cdot \equiv \cdot)$	[--]	[--]	0	[--]	[--]	[--]	
$p(\cdot \\| \cdot)$	[- -]	[- -]	3	[--]	[--]	[- -]	
Other	18	14	13	14	19	16	

Results: responses in percentages $(N=120)$ (Peefere \& דuwki, 2017)

Interpretation	T13	T14	T15	T16	T17	T18	
[p($\cdot \cdot \cdot$]	[35]	[35]	[30]	[28]	[32]	[31]	
$\left[p(\cdot \mid)_{\bar{T}}\right]$	[9]	[13]	[14]	[13]	[17]	[14]	
$\left[p(\cdot \mid)_{\bar{u}}\right]$	[9]	[8]	[11]	[13]	[7]	[10]	
$\left[p(\cdot \mid \cdot)_{T u}\right]$	[0]	[0]	[1]	[2]	[0]	[0]	
Grouped $p(\cdot \cdot)$	53	56	56	54	55	55	
$p(\cdot \wedge \cdot)$	29	30	28	32	26	29	
$p(\cdot 5 \cdot)$	0	0	0	0	0	0	
$p(\cdot \equiv \cdot)$	[--]	[--]	0	[--]	[- -]	[--]	
$p(\cdot \\| \cdot)$	[--]	[--]	3	[--]	[--]	[--]	
Other	18	14	13	14	19	16	
$\% \Delta p>0$	14	100	75	33	81	47	

Percentages of response types in Pfeifer and Stockcke-Schobel (2015) $(N=80)$

Interpretation	T1	T2	T3	T4	T5	T6
$p(\cdot \supset \cdot)$	0	1	1	0	0	3
$p(\cdot \wedge \cdot)$	5	13	13	10	9	6
$p(\cdot \mid \cdot)$	63	74	84	78	81	80
Other	28	12	2	12	10	11
	T7	T8	T9	T10	T11	T12
$p(\cdot \supset \cdot)$	1	1	0	0	1	1
$p(\cdot \wedge \cdot)$	10	8	8	6	8	8
$p(\cdot \cdot)$	83	79	86	86	89	85
Other	6	12	6	8	2	6
	T13	T14	T15	T16	T17	T18
$p(\cdot \supset \cdot)$	0	1	1	1	0	0
$p(\cdot \wedge \cdot)$	8	8	6	8	5	5
$p(\cdot \mid \cdot)$	85	88	89	78	83	90
Other	7	3	4	13	12	5
	T19					
$p(\cdot \supset \cdot)$	3					
$p(\cdot \wedge \cdot)$	5					
$p(\cdot \mid \cdot)$	86					
Other	6					

Percentages of response types in Pefefere and sitedelescrobel (2015) $(N=80)$

Interpretation	T1	T2	T3	T4	T5	T6
$p(\cdot \supset \cdot)$	0	1	1	0	0	3
$p(\cdot \wedge \cdot)$	5	13	13	10	9	6
$p(\cdot \mid \cdot)$	63	74	84	78	81	80
Other	28	12	2	12	10	11
$\Delta \mathrm{p}$	0.33	-0.80	-0.20	-0.75	0.00	0.00
	T7	T8	T9	T10	T11	T12
$p(\cdot \supset \cdot)$	1	1	0	0	1	1
$p(\cdot \wedge \cdot)$	10	8	8	6	8	8
$p(\cdot \mid \cdot)$	83	79	86	86	89	85
Other	6	12	6	8	2	6
Δp	0.33	-0.25	0.25	0.33	0.25	-0.80
	T13	T14	T15	T16	T17	T18
$p(\cdot \supset \cdot)$	0	1	1	1	0	0
$p(\cdot \wedge \cdot)$	8	8	6	8	5	5
$p(\cdot \mid \cdot)$	85	88	89	78	83	90
Other	7	3	4	13	12	5
Δp	0.00	0.75	-0.75	0.00	0.00	0.25
	T19					
$p(\cdot \supset \cdot)$	3					
$p(\cdot \wedge \cdot)$	5					
$p(\cdot \mid \cdot)$	86					
Other	6					
Δp	-0.20					

Percentages of response types in Prefier and stiockescstobel (2015) $(N=80)$

Interpretation	T1	T2	T3	T4	T5	T6
$p(\cdot \supset \cdot)$	0	1	1	0	0	3
$p(\cdot \wedge \cdot)$	5	13	13	10	9	6
$p(\cdot \mid \cdot)$	63	74	84	78	81	80
Other	28	12	2	12	10	11
Δp	0.33	-0.80	-0.20	-0.75	0.00	0.00
	T7	T8	T9	T10	T11	T12
$p(\cdot \supset \cdot)$	1	1	0	0	1	1
$p(\cdot \wedge \cdot)$	10	8	8	6	8	8
$p(\cdot \mid \cdot)$	83	79	86	86	89	85
Other	6	12	6	8	2	6
Δp	0.33	-0.25	0.25	0.33	0.25	-0.80
	T13	T14	T15	T16	T17	T18
$p(\cdot \supset \cdot)$	0	1	1	1	0	0
$p(\cdot \wedge \cdot)$	8	8	6	8	5	5
$p(\cdot \mid \cdot)$	85	88	89	78	83	90
Other	7	3	4	13	12	5
Δp	0.00	0.75	-0.75	0.00	0.00	0.25
	T19					
$p(\cdot \supset \cdot)$	3					
$p(\cdot \wedge \cdot)$	5					
$p(\cdot \mid \cdot)$	86					
Other	6					
Δp	-0.20					

Further results

$p(C \mid A)$ best predictor for beliefs in conditionals, even if

- x_{1}, \ldots, x_{4} is precise or imprecise (Pfeifer, 2013a)

Further results

$p(C \mid A)$ best predictor for beliefs in conditionals, even if

- x_{1}, \ldots, x_{4} is precise or imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or as an abductive conditional (Pfeifer \& Tulkki, 2017)

Further results

$p(C \mid A)$ best predictor for beliefs in conditionals, even if

- x_{1}, \ldots, x_{4} is precise or imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or as an abductive conditional (Pfeifer \& Tulkki, 2017) or as
- ... a counterfactual, formulated by a fact (not A) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a; Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017)

Further results

$p(C \mid A)$ best predictor for beliefs in conditionals, even if

- x_{1}, \ldots, x_{4} is precise or imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or as an abductive conditional (Pfeifer \& Tulkki, 2017) or as
- ... a counterfactual, formulated by a fact (not A) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a; Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017)
- whether

$$
\Delta p=p(C \mid A)-p\left(\left.C\right|_{\neg} A\right)>0
$$

is violated or not has no impact on the responses (Pfeifer \& Tulkki, in prep.)

Further results

$p(C \mid A)$ best predictor for beliefs in conditionals, even if

- x_{1}, \ldots, x_{4} is precise or imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or as an abductive conditional (Pfeifer \& Tulkki, 2017) or as
- ... a counterfactual, formulated by a fact (not A) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a; Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017)
- whether

$$
\Delta p=p(C \mid A)-p(C \mid \neg A)>0
$$

is violated or not has no impact on the responses (Pfeifer \& Tulkki, in prep.)

- "experts": 80% conditional probability responses and no shifts

Further results

$p(C \mid A)$ best predictor for beliefs in conditionals, even if

- x_{1}, \ldots, x_{4} is precise or imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or as an abductive conditional (Pfeifer \& Tulkki, 2017) or as
- ... a counterfactual, formulated by a fact (not A) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a; Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017)
- whether

$$
\Delta p=p(C \mid A)-p\left(\left.C\right|_{\neg} A\right)>0
$$

is violated or not has no impact on the responses (Pfeifer \& Tulkki, in prep.)

- "experts": 80% conditional probability responses and no shifts
- apparent pragmatic/relevance effect when conditionals are "packed" (e.g., "If the card shows a 2, then the card shows an even number") or "unpacked" ("If the card shows a 2 , then the card shows a 2 or a 4 ")

Further results

$p(C \mid A)$ best predictor for beliefs in conditionals, even if

- x_{1}, \ldots, x_{4} is precise or imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or as an abductive conditional (Pfeifer \& Tulkki, 2017) or as
- ... a counterfactual, formulated by a fact (not A) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a; Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017)
- whether

$$
\Delta p=p(C \mid A)-p\left(\left.C\right|_{\neg} A\right)>0
$$

is violated or not has no impact on the responses (Pfeifer \& Tulkki, in prep.)

- "experts": 80% conditional probability responses and no shifts
- apparent pragmatic/relevance effect when conditionals are "packed" (e.g., "If the card shows a 2, then the card shows an even number") or "unpacked" ("If the card shows a 2, then the card shows a 2 or a 4"): Most people judge (correctly) $p($ even $\mid x=2)=1$

Further results

$p(C \mid A)$ best predictor for beliefs in conditionals, even if

- x_{1}, \ldots, x_{4} is precise or imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007;

Pfeifer \& Stöckle-Schobel, 2015) or as an abductive conditional (Pfeifer \& Tulkki, 2017) or as

- ... a counterfactual, formulated by a fact (not A) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a; Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017)
- whether

$$
\Delta p=p(C \mid A)-p\left(\left.C\right|_{\neg} A\right)>0
$$

is violated or not has no impact on the responses (Pfeifer \& Tulkki, in prep.)

- "experts": 80% conditional probability responses and no shifts
- apparent pragmatic/relevance effect when conditionals are "packed" (e.g., "If the card shows a 2, then the card shows an even number") or "unpacked" ("If the card shows a 2, then the card shows a 2 or a 4"): Most people judge (correctly) $p($ even $\mid x=2)=1$
but (incorrectly) $p(x=2 \vee x=4 \mid x=2)=0$ (Fugard, Pfeifer, \& Mayerhofer, 2011)

Table of contents

Introduction

Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
Inferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks
Nested conditionals
Generalised modus ponens
An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
Existential import
Figure 1: coherent probabilistic syllogisms
Syllogistic sentences as defaults
Concluding remarks

References

From modus ponens to generalised modus ponens

	Modus ponens	Generalised modus ponens
(Categorical premise)	A	$A \mid H$
(Conditional premise)	If A, then C	If $A \mid H$, then C
(Conclusion)	C	C

From modus ponens to generalised modus ponens

	Nodus pones	Generalised modus pones
(Categorical premise)	A	$A \mid H$
(Conditional premise)	If A, then C	
	If $A \mid H$, then C	
	C	

Sample instantiation (Gibbard, 1981, p. 237):
$\overbrace{\text { The cup breaks if dropped }}^{\text {Al }}$.

If $\overbrace{\text { the cup breaks if dropped }}^{A \mid H}$, then $\overbrace{\text { the cup is fragile }}^{C}$.
C
Therefore, the cup is fragile.

Generalised Probabilistic MP (Sanfilippo, Pefefer, \& Gilio, 2017)

Generalised modus ponens	Generalised probabilistic modus ponens
$A \mid H$	$p(A \mid H)=x$
If $A \mid H$, then C	
C	

Generalised Probabilistic MP (Sanfilipo, Pefefer, \& Gilio, 2017)

Generalised modus ponens	Generalised probabilistic modus ponens
$A \mid H$	$p(A \mid H)=x$
If $A \mid H$, then C	
C	

What does the conditional premise mean? It is a conditional random quantity.

Generalised Probabilistic MP (Sanfilippo, Pefefer, \& Gilio, 2017)

Generalised modus ponens	Generalised probabilistic modus ponens
$A \mid H$	$p(A \mid H)=x$
If $A \mid H$, then C	
C	

What does the conditional premise mean? It is a conditional random quantity.
How can we assess its uncertainty? By its prevision (denoted by \mathbb{P}).

Generalised Probabilistic MP (Sanfilipop, Pefere, \& Gilio, 2017)

Generalised modus ponens	Generalised probabilistic modus ponens
$A \mid H$	$p(A \mid H)=x$
If $A \mid H$, then C	
C	

What does the conditional premise mean? It is a conditional random quantity.
How can we assess its uncertainty? By its prevision (denoted by \mathbb{P}).
In betting terms, $\mu=\mathbb{P}[C \mid(A \mid H)]$ represents the amount you agree to pay, with the proviso that you will receive the quantity:

$$
C \left\lvert\,(A \mid H)= \begin{cases}1, & \text { if } A \wedge H \wedge C \text { true } \\ 0, & \text { if } A \wedge H \wedge \neg C \text { true } \\ \mu, & \text { if } \neg A \wedge H \text { true } \\ x+\mu(1-x), & \text { if } \neg H \wedge C \text { true } \\ \mu(1-x), & \text { if } \neg H \wedge \neg C \text { true. }\end{cases}\right.
$$

Generalised Probabilistic MP (Sanfitipo, Pefiefer, \& Gilio, 2017)

Generalised modus ponens	Generalised probabilistic modus ponens
$A \mid H$	$p(A \mid H)=x$
If $A \mid H$, then C	$\mathbb{P}(C \mid(A \mid H))=y$
C	$? \leq p(C) \leq ?$

What does the conditional premise mean? It is a conditional random quantity.
How can we assess its uncertainty? By its prevision (denoted by \mathbb{P}).
In betting terms, $\mu=\mathbb{P}[C \mid(A \mid H)]$ represents the amount you agree to pay, with the proviso that you will receive the quantity:

$$
C \left\lvert\,(A \mid H)= \begin{cases}1, & \text { if } A \wedge H \wedge C \text { true } \\ 0, & \text { if } A \wedge H \wedge \neg C \text { true } \\ \mu, & \text { if } \neg A \wedge H \text { true } \\ x+\mu(1-x), & \text { if } \neg H \wedge C \text { true } \\ \mu(1-x), & \text { if } \neg H \wedge \neg C \text { true. }\end{cases}\right.
$$

Since $(C \mid A)|H \neq C|(A \wedge H)$, the Import-Export Principle does not hold. Thus, Lewis' first triviality result (1976) is avoided (Gilio \& Sanfilippo, 2014).

Generalised modus ponens (Sanfilipo, Pfefier, \& Gilio, 2017, Theorem 5, p. 487)

Generalised modus ponens	Generalised probabilistic modus ponens
$A \mid H$	$p(A \mid H)=x$
If $A \mid H$, then C	$\frac{P(C \mid(A \mid H))=y}{? C}$

How do we propagate the uncertainty from the premises to the conclusion?

Generalised modus ponens (Sanfitipo, Peffer, \& Gili, 2017, Theoeren 5, p, 487)

Generalised modus ponens	Generalised probabilistic modus ponens
$A \mid H$	$p(A \mid H)=x$
If $A \mid H$, then C	$\mathbb{P}(C \mid(A \mid H))=y$
C	$? \leq p(C) \leq ?$

How do we propagate the uncertainty from the premises to the conclusion?
Theorem
Given any coherent assessment (x, y) on $\{A|H, C|(A \mid H)\}$, with A, C, H logically independent, but $A \neq \perp$ and $H \neq \perp$. The conclusion $p(C)$ is coherent iff

$$
x y \leq p(C) \leq x y+1-x
$$

Generalised modus ponens (Sanfilippo, Pfefier, \& Gilio, 2017, Theorem 5. p. 487)

Generalised modus ponens	Generalised probabilistic modus ponens
$A \mid H$	$p(A \mid H)=x$
If $A \mid H$, then C	$\mathbb{P}(C \mid(A \mid H))=y$
C	$? \leq p(C) \leq ?$

How do we propagate the uncertainty from the premises to the conclusion?
Theorem
Given any coherent assessment (x, y) on $\{A|H, C|(A \mid H)\}$, with A, C, H logically independent, but $A \neq \perp$ and $H \neq \perp$. The conclusion $p(C)$ is coherent iff

$$
x y \leq p(C) \leq x y+1-x
$$

which are just the same probability propagation rules as in the non-nested probabilistic modus ponens. (I.e., from $p(A)=x$ and $p(C \mid A)=y$ infer $x y \leq P(C) \leq x y+1-x$.)

Data of the PTTT revisited

Most people interpret their beliefs in conditionals by $p(C \mid A)$ even if

- x_{1}, \ldots, x_{4} may be imprecise (Pfeifer, 2013a)

Data of the PTTT revisited

Most people interpret their beliefs in conditionals by $p(C \mid A)$ even if

- x_{1}, \ldots, x_{4} may be imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckl-Schobel, 2015) or an abductive conditional (Pfeifer \& Tulkki, 2017)

Data of the PTTT revisited

Most people interpret their beliefs in conditionals by $p(C \mid A)$ even if

- x_{1}, \ldots, x_{4} may be imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or an abductive conditional (Pfeifer \& Tulkki, 2017) or as ...
- ... a counterfactual, formulated by a fact ($n o t A$) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a;
Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017).

Data of the PTTT revisited

Most people interpret their beliefs in conditionals by $p(C \mid A)$ even if

- x_{1}, \ldots, x_{4} may be imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or an abductive conditional (Pfeifer \& Tulkki, 2017) or as ...
- ... a counterfactual, formulated by a fact ($n o t A$) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a; Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017).
Why does conditional probability predict counterfactuals?

Data of the PTTT revisited

Most people interpret their beliefs in conditionals by $p(C \mid A)$ even if

- x_{1}, \ldots, x_{4} may be imprecise (Pfeifer, 2013a)
- the conditional is formulated as a causal conditional (Over et al., 2007; Pfeifer \& Stöckle-Schobel, 2015) or an abductive conditional (Pfeifer \& Tulkki, 2017) or as ...
- ...a counterfactual, formulated by a fact (not A) and a conditional in subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a; Pfeifer \& Stöckle-Schobel, 2015; Pfeifer \& Tulkki, 2017).

Why does conditional probability predict counterfactuals?
Formally (see, e.g. Gilio \& Sanfilippo, 2013),

Table of contents

Introduction

Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
Inferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks
Nested conditionals
Generalised modus ponens
An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
Existential import
Figure 1: coherent probabilistic syllogisms
Syllogistic sentences as defaults
Concluding remarks

References

Aristotle's Theses

AT \#1: $\neg(\neg A \rightarrow A)$

AT \#2: $\neg(A \rightarrow \neg A)$

Aristotle's Theses

AT \#1: $\neg(\neg A \rightarrow A)$

$$
\neg(\neg A \supset A)
$$

AT \#2: $\neg(A \rightarrow \neg A)$

$$
\neg(A \supset \neg A)
$$

Aristotle's Theses

AT \#1: $\neg(\neg A \rightarrow A)$

$$
\neg(\neg A \supset A) \equiv \neg A \wedge \neg A \equiv \neg A
$$

AT \#2: $\neg(A \rightarrow \neg A)$

$$
\neg(A \supset \neg A) \equiv A \wedge A \equiv A
$$

Aristotle's Theses: Prob. log. predictions (Pfefere, 2012a, The Monist)

$$
\begin{aligned}
& \text { AT \#1: } \neg(\neg A \rightarrow A) \\
& \quad \cdot P(\neg(\neg A \supset A))=P(\neg A)
\end{aligned}
$$

Aristotle's Theses: Prob. log. predictions (Pfefere, 2012a, The Monist)

AT \#1: $\neg(\neg A \rightarrow A)$

- $P(\neg(\neg A \supset A))=P(\neg A)$
- $P(A \mid \neg A)=0$, its negation: $P(\neg A \mid \neg A)=1$

Aristotle's Theses: Prob. log. predictions (Pfefere, 2012a, The Monist)

```
AT \#1: \(\neg(\neg A \rightarrow A)\)
    - \(P(\neg(\neg A \supset A))=P(\neg A)\)
    - \(P(A \mid \neg A)=0\), its negation: \(P(\neg A \mid \neg A)=1\)
AT \#2: \(\neg(A \rightarrow \neg A)\)
    - \(P(\neg(A \supset \neg A))=P(A)\)
    - \(P(\neg A \mid A)=0\), its negation: \(P(\neg \neg A \mid A)=P(A \mid A)=1\)
```


Experiment 1: Abstract version, Aristotle's Thesis \#1

The letter " A " denotes a sentence, like "It is raining".
There are sentences, where you can infer only on the basis of their logical form, whether they are guaranteed to be false or guaranteed to be true. For example:

- " A and not- A " is guaranteed to be false.
- " A or not- A " is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical form, whether they are true or false. The sentence " A " ("It is raining."), for example, can be true but it can just as well be false: this depends upon whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):
It is not the case, that: If not- A, then A.
The sentence in the box is guaranteed to be false The sentence in the box is guaranteed to be true One cannot infer whether the sentence is true or false

Experiment 1: Abstract version, Aristotle's Thesis \#2

The letter " A " denotes a sentence, like "It is raining".
There are sentences, where you can infer only on the basis of their logical form, whether they are guaranteed to be false or guaranteed to be true. For example:

- " A and not- A " is guaranteed to be false.
- " A or not- A " is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical form, whether they are true or false. The sentence " A " ("It is raining."), for example, can be true but it can just as well be false: this depends upon whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):
It is not the case, that: If A, then not- A.
The sentence in the box is guaranteed to be false The sentence in the box is guaranteed to be true One cannot infer whether the sentence is true or false

Experiment 1: Sample (Pfeferer 2012a, The Monist)

- $N=141$
- all psychology students (University of Salzburg)
- 91% third semester
- 78\% female
- median age: 21 (1st Qu. = 20, 3rd Qu. =23)

Aristotle's Thesis: Results (Pfefier, 2012a, The Monist. Figure 2)

Concrete ($n=71$) versus abstract ($n=71$) task material

Scope ambiguities (Pfefier, 2012a, The Monist)

(W) Negating the conditional: $\neg(A \rightarrow \neg A)$
wide scope
(N) Negating the consequent: $(A \rightarrow \neg \neg A)$
narrow scope

Scope ambiguities (Pfefier, 2012a, The Monist)

(W) Negating the conditional: $\neg(A \rightarrow \neg A)$
wide scope
(N) Negating the consequent: $(A \rightarrow \neg \neg A)$
narrow scope
(W) and (N) are well defined for \wedge and \supset.

Scope ambiguities (Pfefier, 2012a, The Monist)

(W) Negating the conditional: $\neg(A \rightarrow \neg A)$
wide scope
(N) Negating the consequent: $(A \rightarrow \neg \neg A)$
narrow scope
(W) and (N) are well defined for \wedge and \supset. Conditional events, $B \mid A$, are usually negated by (N), $P(\neg B \mid A)$.

Experiment 2: Design (Pfeferer, 2012a, The Monist)

Between participants: Explicit $\left(n_{1}=20\right)$ vs. implicit negation $\left(n_{2}=20\right)$ Within participants: 12 Tasks

Task	Name	Argument form
1	Aristotle's Thesis 1	$\neg(A \rightarrow \neg A)$
2	Negated Reflexivity	$\neg(A \rightarrow A)$
3	Aristotle's Thesis 2	$\neg(\neg A \rightarrow A)$
4	Reflexivity	$A \rightarrow A$
5	Contingent Arg. 1	$A \rightarrow B$
6	Contingent Arg. 2	$\neg(A \rightarrow B)$
$7-10$	4 Probabilistic truth-table tasks	
11	Paradox 1	from B infer $A \rightarrow B$
12	Neg. Paradox 1	from B infer $A \rightarrow \neg B$

Experiment 2: Predictions (Pfefier, 2012a, The Monist)

Argument form	Scope			
	.	wide	narrow	
			. \cdot.	-^*
$\neg(A \rightarrow \neg A)$	T	CT	T	T
$\neg(A \rightarrow A)$	F	F	CT	CT
$\neg(\neg A \rightarrow A)$	T	CT	T	T
$A \rightarrow A$	T	T	T	CT
$A \rightarrow B$	CT	CT	CT	CT
$\neg(A \rightarrow B)$	CT	CT	CT	CT
from B infer $A \rightarrow B$	U		H	U
from B infer $A \rightarrow \neg B$	U		H	L

Note: CT=can't tell, $\mathrm{T}=$ true, $\mathrm{F}=$ false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Experiment 2: Predictions $\cdot \mid$ against wide scope of $\cdot \supset \cdot$

Argument form	Scope			
	.	wide	narrow	
		\cdot.	. ${ }^{\text {P }}$	$\cdot \wedge$
$\neg(A \rightarrow \neg A)$	T	CT	T	T
$\neg(A \rightarrow A)$	F	F	CT	CT
$\neg(\neg A \rightarrow A)$	T	CT	T	T
$A \rightarrow A$	T	T	T	CT
$A \rightarrow B$	CT	CT	CT	CT
$\neg(A \rightarrow B)$	CT	CT	CT	CT
from B infer $A \rightarrow B$	U		H	U
from B infer $A \rightarrow \neg B$	U		H	L

Note: CT=can't tell, $\mathrm{T}=$ true, $\mathrm{F}=$ false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Experiment 2: Predictions \mid against narrow scope of •כ.

Argument form	Scope			
	.	wide	narrow	
			- J.	-^.
$\neg(A \rightarrow \neg A)$	T	CT	T	T
$\neg(A \rightarrow A)$	F	F	CT	CT
$\neg(\neg A \rightarrow A)$	T	CT	T	T
$A \rightarrow A$	T	T	T	CT
$A \rightarrow B$	CT	CT	CT	CT
$\neg(A \rightarrow B)$	CT	CT	CT	CT
from B infer $A \rightarrow B$	U		H	U
from B infer $A \rightarrow \neg B$	U		H	L

Note: CT=can't tell, $\mathrm{T}=$ true, $\mathrm{F}=$ false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Experiment 2: Sample (Pfefifer, 2012a, The Monist)

- $N=40$ (University of Salzburg)
- no psychology students
- individual tested
- 50% female
- median age: 22 (1st Qu. = 21, 3rd Qu. $=23$)

Experiment 2: Results (Pfefere, 2012a, The Monise)

Argument form	-	Scope		- \wedge.	Responses in percent		
		wide	narrow				
		\cdot •	- J .		T	F	CT
$\neg(A \rightarrow \neg A)$	T	CT	T	T	78	18	5
$\neg(A \rightarrow A)$	F	F	CT	CT	10	88	2
$\neg(\neg A \rightarrow A)$	T	CT	T	T	80	13	8
$A \rightarrow A$	T	T	T	CT	93	3	5
$A \rightarrow B$	CT	CT	CT	CT	0	13	88
$\neg(A \rightarrow B)$	CT	CT	CT	CT	20	3	78
from B infer $A \rightarrow B$	U		H	U	40	0	60
from B infer $A \rightarrow \neg B$	U		H	L	5	30	65

Note: CT=can't tell, T=true, F=false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Experiment 2: Results (Prefier, 2012a, The Monise)

Argument form	-	Scope		- \wedge.	Responses in percent		
		wide	narrow				
		$\cdot \supset \cdot$	$\cdot \supset \cdot$		T	F	CT
$\neg(A \rightarrow \neg A)$	T	CT	T	T	78	18	5
$\neg(A \rightarrow A)$	F	F	CT	CT	10	88	2
$\neg(\neg A \rightarrow A)$	T	CT	T	T	80	13	8
$A \rightarrow A$	T	T	T	CT	93	3	5
$A \rightarrow B$	CT	CT	CT	CT	0	13	88
$\neg(A \rightarrow B)$	CT	CT	CT	CT	20	3	78
from B infer $A \rightarrow B$	U		H	U	40	0	60
from B infer $A \rightarrow \neg B$	U		H	L	5	30	65

Note: CT=can't tell, T=true, F=false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Time for a quiz!

Get into your teams!

Each team can share a phone, tablet or laptop.

$$
\begin{aligned}
& \text {...and go to } \\
& \text { kahoot.it }
\end{aligned}
$$

Other connexive principle: Aristotle's Second Thesis

$$
\neg((A \rightarrow B) \wedge(\neg A \rightarrow B))
$$

Other connexive principle: Aristotle's Second Thesis

$$
\neg((A \rightarrow B) \wedge(\neg A \rightarrow B))
$$

$p(B \mid A)$ does not constrain $p(B \mid \neg A)$ and vice versa. Therefore, Aristotle's Second Thesis does not hold.

Other connexive principle: Aristotle's Second Thesis

$$
\neg((A \rightarrow B) \wedge(\neg A \rightarrow B))
$$

$p(B \mid A)$ does not constrain $p\left(\left.B\right|_{\neg} A\right)$ and vice versa. Therefore, Aristotle's Second Thesis does not hold.

Also in the theory of conditional random quantities, the prevision in $\neg((B \mid A) \wedge(B \mid \neg A))$ is not in general equal to 1 .

Connexive principle: Boethius' theses

$$
\begin{aligned}
& (\mathrm{BT} 1)(A \rightarrow B) \rightarrow \neg(A \rightarrow \neg B) \\
& (\mathrm{BT} 2)(A \rightarrow \neg B) \rightarrow \neg(A \rightarrow B)
\end{aligned}
$$

Connexive principle: Boethius' theses

(BT1) $(A \rightarrow B) \rightarrow \neg(A \rightarrow \neg B)$
(BT2) $(A \rightarrow \neg B) \rightarrow \neg(A \rightarrow B)$
Both versions of Boethius' theses hold under the narrow scope negation (e.g., for (BT1) note that $\neg \neg B|A=B| A$).

Connexive principle: Abelard's First Principle

$$
\neg((A \rightarrow B) \wedge(A \rightarrow \neg B))
$$

Connexive principle: Abelard's First Principle

$$
\neg((A \rightarrow B) \wedge(A \rightarrow \neg B))
$$

If $p(B \mid A)=x$, then, by coherence $p(\neg B \mid A)=1-x$. Since, in general $p(B \mid A)+p(\neg B \mid A)=1$, it cannot be the case that both, $p(B \mid A)$ and $p(\neg B \mid A)$ are "high" (i.e., > .5) Therefore, Abelard's First Principle holds.

Connexive principle: Abelard's First Principle

$$
\neg((A \rightarrow B) \wedge(A \rightarrow \neg B))
$$

If $p(B \mid A)=x$, then, by coherence $p(\neg B \mid A)=1-x$. Since, in general $p(B \mid A)+p(\neg B \mid A)=1$, it cannot be the case that both, $p(B \mid A)$ and $p(\neg B \mid A)$ are "high" (i.e., > .5) Therefore, Abelard's First Principle holds.

Within the theory of conditional random quantities, we observe that:

$$
(B \mid A) \wedge(\neg B \mid A)=\perp \mid A
$$

The only coherent assessment of $\perp \mid A$ is 0 . Therefore, Abelard's First Principle holds.

Table of contents

Introduction

Nonmonotonic reasoning

Paradoxes of the material conditional
Probabilistic truth tables
Inferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks

Nested conditionals

Generalised modus ponens
An application to counterfactuals

```
Aristotle's theses and other connexive principles
```

Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment

```
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
    Existential import
    Figure 1: coherent probabilistic syllogisms
    Syllogistic sentences as defaults
```

Concluding remarks

References

What is argument strength?

argument

What is argument strength?

argument
premise

What is argument strength?

What is argument strength?

form

What is argument strength?

What is argument strength?

uncertain consequence relation
Bayes' theorem
(e.g. Hahn \& Oaksford, 2006) dynamic
ignores the structure premises: e.g.,
how shall we assess our degree of belief in
conclusion
\tilde{c} premises
$\xrightarrow[\text { sequence relation }]{ }$
-

What is argument strength?

argument

〈premise(s), conclusion〉 premise
form
concrete argument (Pfeifer, 2007, 2013b)
(Pfeifer \& Kleiter, 2006a)

uncertain consequence relation

measures of confirmation (see Crupi, Tentori, \& Gonzales, 2007):

$$
\begin{array}{ll}
D(e, h)=p(h \mid e)-p(h) & \text { (Carnap, 1962) } \tag{Carnap,1962}\\
S(e, h)=p(h \mid e)-p(h \mid \neg e) & \text { (Christensen, 1999) } \\
M(e, h)=p(e \mid h)-p(e) & \text { (Mortimer, 1988) } \\
N(e, h)=p(e \mid h)-p(e \mid \neg h) & \text { (Nozick, 1981) } \\
C(e, h)=p(e \wedge h)-p(e) \times p(h) & \text { (Carnap, 1962) } \\
R(e, h)=[p(h \mid e) / p(h)]-1 & \text { (Finch, 1960) } \\
G(e, h)=1-[p(\neg h \mid e) / p(\neg h)] & \text { (Rips, 2001) } \\
L(e, h)=\frac{p(e \mid h)-p(e \mid \neg h)}{p(e \mid h)+p(e \mid \neg h)} & \text { (Kemeny \& Oppenheim, 1952) }
\end{array}
$$

What is argument strength?

argument

〈premise(s), conclusion〉 premise
form
concrete argument (Pfeifer, 2007, 2013b)

uncertain consequence relation

 measures of confirmation as argument strength```
\mp@subsup{}{}{5}D(\mathcal{P},\mathcal{C})=p(\mathcal{C}|\mathcal{P})-p(\mathcal{C})\quad(Carnap, 1962)
\mp@subsup{}{}{5}S(\mathcal{P},\mathcal{C})=p(\mathcal{C}|\mathcal{P})-p(\mathcal{C}|\neg\mathcal{P})\quad(Christensen, 1999)
\mp@subsup{}{}{5}M(\mathcal{P},\mathcal{C})=p(\mathcal{P}|\mathcal{C})-p(\mathcal{P})\quad(Mortimer, 1988)
\mp@subsup{}{}{5}N(\mathcal{P},\mathcal{C})=p(\mathcal{P}|\mathcal{C})-p(\mathcal{P}|\neg\mathcal{C})\quad(Nozick, 1981)
\mp@subsup{}{}{5}C(\mathcal{P},\mathcal{C})=p(\mathcal{P}\wedge\mathcal{C})-p(\mathcal{P})\timesp(\mathcal{C})\quad(Carnap, 1962)
\mp@subsup{s}{R(\mathcal{P},\mathcal{C})}{}=[p(\mathcal{C}|\mathcal{P})/p(\mathcal{C})]-1 (Finch, 1960)
s}G(\mathcal{P},\mathcal{C})=1-[p(\neg\mathcal{C}|\mathcal{P})/p(\neg\mathcal{C})]\quad (Rips, 2001
\mp@subsup{s}{L(\mathcal{P},\mathcal{C})}{}=\frac{p(\mathcal{P}|\mathcal{C})-p(\mathcal{P}|\neg\mathcal{C})}{p(\mathcal{P}|\mathcal{C})+p(\mathcal{P}|\neg\mathcal{C})}

\section*{What is argument strength?}

\section*{argument}
```

< premise(s), conclusion\rangle premise

```
form
concrete argument (Pfeifer, 2007, 2013b)

\section*{uncertain consequence relation} measures of confirmation as argument strength

```

\mp@subsup{}{}{5}S(\mathcal{P},\mathcal{C})=p(\mathcal{C}|\mathcal{P})-p(\mathcal{C}|\neg\mathcal{P})\quad(Christensen, 1999)
\mp@subsup{}{}{5}M(\mathcal{P},\mathcal{C})=p(\mathcal{P}|\mathcal{C})-p(\mathcal{P})\quad(Mortimer, 1988)
(Nozick, 1981)
\mp@subsup{}{}{5}N(\mathcal{P},\mathcal{C})=p(\mathcal{P}|\mathcal{C})-p(\mathcal{P}|\neg\mathcal{C})
(Carnap, 1962)
(Finch, 1960)
(Rips, 2001)
(Kemeny \& Oppenheim, 1952)

```

\section*{What is argument strength?}

uncertain consequence relation
deductive consequence relation (Pfeifer, 2007, 2013b)
ignores the structure of the premises

\section*{What is argument strength?}

\section*{What is argument strength?}

uncertain consequence relation
ignores the structure of the premises
deductive consequence relation (Pfeifer, 2007, 2013b)
local
static
sensitive to the premise structure
Idea: An argument ist strong iff its conclusion probability is high and precise

\section*{Measuring argument strength (Pfefer, 2013b)}

Let \(x^{\prime}\) and \(x^{\prime \prime}\) denote the tightest coherent lower and upper probability bounds of the conclusion \(\mathcal{C}\) of an argument \(\mathcal{A}\), respectively.

\section*{Measuring argument strength (Pfefer, 2013b)}

Let \(x^{\prime}\) and \(x^{\prime \prime}\) denote the tightest coherent lower and upper probability bounds of the conclusion \(\mathcal{C}\) of an argument \(\mathcal{A}\), respectively.

The argument strength \(\mathfrak{s}\) is defined by
\[
\mathfrak{s}=\text { def. } \overbrace{\left(1-\left(x^{\prime \prime}-x^{\prime}\right)\right)}^{\text {precision }} \times \overbrace{\frac{x^{\prime}+x^{\prime \prime}}{2}}^{\text {location }},
\]
where \(0 \leq \mathfrak{s} \leq 1\), and 0 equals minimum and 1 equals maximum argument strength.

Strength: \(\mathfrak{s}=\left(1-\left(x^{\prime \prime}-x^{\prime}\right)\right) \times\left(\left(x^{\prime}+x^{\prime \prime}\right) / 2\right)_{(\text {PPefifer 2013b) }}\)

Strength: \(\mathfrak{s}=\left(1-\left(x^{\prime \prime}-x^{\prime}\right)\right) \times\left(\left(x^{\prime}+x^{\prime \prime}\right) / 2\right)\) (Pfeferer 2013b)

Strength: \(\mathfrak{s}=\left(1-\left(x^{\prime \prime}-x^{\prime}\right)\right) \times\left(\left(x^{\prime}+x^{\prime \prime}\right) / 2\right)\) (Pfeferer 2013b)

Strength: \(\mathfrak{s}=\left(1-\left(x^{\prime \prime}-x^{\prime}\right)\right) \times\left(\left(x^{\prime}+x^{\prime \prime}\right) / 2\right)_{(\text {PPefifer 2013b) }}\)

Strength: \(\mathfrak{s}=\left(1-\left(x^{\prime \prime}-x^{\prime}\right)\right) \times\left(\left(x^{\prime}+x^{\prime \prime}\right) / 2\right)_{(\text {PPefifer 2013b) }}\)

Ellsberg paradox (Ellibeers 1981, , . G63)

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653f)}

\section*{30 red balls; 60 black or yellow balls}

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653F)}

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653f)}

\[
(\mathrm{a})>(\mathrm{b})
\]

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653F)}

30 red balls; 60 black or yellow balls
Gamble (a) \$100 if red, \$0 otherwise Gamble (b) \$100 if black, \$0 otherwise
Gamble (c) \$100 if red or yellow, \$0 otherwise
Gamble (d) \$100 if black or yellow, \$0 otherwise (a) \(>\) (b)

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653F)}

30 red balls; 60 black or yellow balls
Gamble (a) \$100 if red, \$0 otherwise Gamble (b) \$100 if black, \$0 otherwise
Gamble (c) \(\$ 100\) if red or yellow, \(\$ 0\) otherwise
Gamble (d) \$100 if black or yellow, \$0 otherwise
\[
(\mathrm{a})>(\mathrm{b}) \quad \text { and } \quad(\mathrm{d})>(\mathrm{c})
\]

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653f)}

30 red balls; 60 black or yellow balls
(a) \(\$ 100\) if red, \(\$ 0\) otherwise
\[
p(R)=.33
\]
(b) \(\$ 100\) if black, \(\$ 0\) otherwise
\[
0 \leq p(B) \leq .67
\]
(c) \(\$ 100\) if red or yellow, \(\$ 0\) otherwise
\[
.33 \leq p(R \vee Y) \leq 1
\]
(d) \(\$ 100\) if black or yellow, \(\$ 0\) otherwise
\(p(B \vee Y)=.67\)
\[
(\mathrm{a})>(\mathrm{b}) \quad \text { and } \quad(\mathrm{d})>(\mathrm{c})
\]

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653f)}

30 red balls; 60 black or yellow balls
(a) \(\$ 100\) if red, \(\$ 0\) otherwise
\[
p(R)=.33
\]
(b) \(\$ 100\) if black, \(\$ 0\) otherwise
\[
0 \leq p(B) \leq .67
\]
(c) \(\$ 100\) if red or yellow, \(\$ 0\) otherwise
\(.33 \leq p(R \vee Y) \leq 1\)
(d) \(\$ 100\) if black or yellow, \(\$ 0\) otherwise
\(p(B \vee Y)=.67\)
\[
(\mathrm{a})>(\mathrm{b}) \quad \text { and } \quad(\mathrm{d})>(\mathrm{c})
\]

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653f)}

30 red balls; 60 black or yellow balls
(a) \(\$ 100\) if red, \(\$ 0\) otherwise
\[
p(R)=.33
\]
(b) \(\$ 100\) if black, \(\$ 0\) otherwise
\[
0 \leq p(B) \leq .67
\]
(c) \(\$ 100\) if red or yellow, \(\$ 0\) otherwise \(.33 \leq p(R \vee Y) \leq 1\)
(d) \(\$ 100\) if black or yellow, \(\$ 0\) otherwise \(p(B \vee Y)=.67\)
\[
(\mathrm{a})>(\mathrm{b}) \quad \text { and } \quad(\mathrm{d})>(\mathrm{c})
\]

If \(p(R)>p(B)\), then \(p(B \vee Y)<p(R \vee Y)\)

\section*{Ellsberg paradox (Ellsberg, 1961, p. 653f)}

30 red balls; 60 black or yellow balls
(a) \(\$ 100\) if red, \(\$ 0\) otherwise
\[
p(R)=.33
\]
(b) \(\$ 100\) if black, \(\$ 0\) otherwise
\[
0 \leq p(B) \leq .67
\]
(c) \(\$ 100\) if red or yellow, \(\$ 0\) otherwise
\[
.33 \leq p(R \vee Y) \leq 1
\]
(d) \(\$ 100\) if black or yellow, \(\$ 0\) otherwise
\[
p(B \vee Y)=.67
\]
\[
(\mathrm{a})>(\mathrm{b}) \quad \text { and } \quad(\mathrm{d})>(\mathrm{c})
\]
\(\downarrow\)
If \(p(R)>p(B)\), then \(p(B \vee Y)<p(R \vee Y)\)

\section*{Ellsberg paradox (Ellsberg, 1961, p. 6537)}

30 red balls; 60 black or yellow balls
(a) \(\$ 100\) if red, \(\$ 0\) otherwise
\[
p(R)=.33
\]
(b) \(\$ 100\) if black, \(\$ 0\) otherwise
\[
0 \leq p(B) \leq .67
\]
(c) \(\$ 100\) if red or yellow, \(\$ 0\) otherwise \(.33 \leq p(R \vee Y) \leq 1\)
(d) \(\$ 100\) if black or yellow, \(\$ 0\) otherwise \(p(B \vee Y)=.67\)
\[
(\mathrm{a})>(\mathrm{b}) \quad \text { and } \quad(\mathrm{d})>(\mathrm{c})
\]

4
If \(p(R)>p(B)\), then \(p(B \vee Y)<p(R \vee Y)\)

\title{
Ellsberg paradox - epistemic version (Pfeferer \& Pankka, 2017)
}

30 red balls; 60 black or yellow balls
\[
\begin{gathered}
p(R)=.33 \\
p(B \vee Y)=.67
\end{gathered}
\]

\section*{Ellsberg paradox - epistemic version (Pefefere \& Pankka, 2017)}

30 red balls; 60 black or yellow balls
\[
\begin{aligned}
& p(R)=.33 \\
& \begin{array}{ccc}
p(B \vee Y)=.67 \\
\hline p(R)=.33 & 0 \leq p(B) \leq .67 \quad .33 \leq p(R \vee Y) \leq 1 & p(B \vee Y)=.67
\end{array}
\end{aligned}
\]

\section*{Ellsberg paradox - epistemic version (Pefefere \& Pankka, 2017)}

30 red balls; 60 black or yellow balls
\[
\begin{array}{cccc}
p(R)=.33 \\
p(B \vee Y)=.67 \\
\hline p(R)=.33 & 0 \leq p(B) \leq .67 & .33 \leq p(R \vee Y) \leq 1 & p(B \vee Y)=.67 \\
\mathcal{A}_{1} \text { for (a) } & \mathcal{A}_{2} \text { for (b) } & \mathcal{A}_{3} \text { for }(\mathrm{c}) & \mathcal{A}_{4} \text { for (d) }
\end{array}
\]

\section*{Ellsberg paradox - epistemic version (PPefefer \& Panksa, 2017)}

30 red balls; 60 black or yellow balls
\[

\]

\section*{Ellsberg paradox - epistemic version (Pefefer \& Panke, 2017)}

30 red balls; 60 black or yellow balls
\[

\]

Measure \(\mathfrak{s}\) matches the data (Pfeifer \& Pankka, 2017):
\[
\mathfrak{s}\left(\mathcal{A}_{1}\right)>\mathfrak{s}\left(\mathcal{A}_{2}\right) \quad \text { and } \quad \mathfrak{s}\left(\mathcal{A}_{4}\right)>\mathfrak{s}\left(\mathcal{A}_{3}\right)
\]

\section*{Experiment}

Sample:
- 60 students (University of Helsinki)
- none of them studied psychology, mathematics, statistics, or philosophy
- 15 € compensation for participation
- individual testing

\section*{Experiment}

Sample:
- 60 students (University of Helsinki)
- none of them studied psychology, mathematics, statistics, or philosophy
- 15 € compensation for participation
- individual testing

Design:
\begin{tabular}{lll}
\hline Presented probabilities & \multicolumn{2}{c}{ Formulation } \\
& epistemic & persuasive \\
\hline Premise \& conclusion & \(n_{1}=10\) & \(n_{2}=10\) \\
Conclusion only & \(n_{3}=10\) & \(n_{4}=10\) \\
Premise only & \(n_{5}=10\) & \(n_{6}=10\) \\
\hline
\end{tabular}

\section*{Task material (Argument ranking task)}

You will be presented with two arguments. Your task will be to tell, which one is stronger.

\section*{Task material (Argument ranking task)}

You will be presented with two arguments. Your task will be to tell, which one is stronger.

There is an urn that contains 90 balls, of which 30 are red and 60 are black or yellow. The ratio of the black and yellow balls is unknown-there may be from 0 to 60 black (or yellow) balls. One ball is drawn from the urn and you are asked to choose a bet between two options. Bet 1 means that you will win \(\$ 100\), if the ball drawn from the urn is red. Bet 2 means that you will win \(\$ 100\), if the ball is black.

\section*{Task material (Argument ranking task)}

You will be presented with two arguments. Your task will be to tell, which one is stronger.

There is an urn that contains 90 balls, of which 30 are red and 60 are black or yellow. The ratio of the black and yellow balls is unknown-there may be from 0 to 60 black (or yellow) balls. One ball is drawn from the urn and you are asked to choose a bet between two options. Bet 1 means that you will win \(\$ 100\), if the ball drawn from the urn is red. Bet 2 means that you will win \(\$ 100\), if the ball is black.

Two of your friends are arguing about which bet you should choose. They both give you an argument.

\section*{Task material (Argument ranking task, epistemic condition)}

\section*{Argument 1 for Bet 1}

I am \(\times \%\) sure that the ball drawn from the urn is red.
I am \(\times\) \% sure that the ball drawn from the urn is black or yellow.
Therefore, I am \(33 \%\) sure that the ball drawn from the urn is red.

\section*{Task material (Argument ranking task, epistemic condition)}

\section*{Argument 1 for Bet 1}

I am \(4 \times \%\) sure that the ball drawn from the urn is red.
I am \(\times\) \% sure that the ball drawn from the urn is black or yellow.
Therefore, I am \(33 \%\) sure that the ball drawn from the urn is red.

\section*{Argument 2 for Bet 2}

I am \(\times \%\) sure that the ball drawn from the urn is red.
I am \(\times \%\) sure that the ball drawn from the urn is black or yellow.
Therefore, I am at least \(0 \%\) and at most \(67 \%\) sure that the ball drawn from the urn is black.

\section*{Task material (Argument ranking task, epistemic condition)}

\section*{Argument 1 for Bet 1}

I am \(\times \%\) sure that the ball drawn from the urn is red.
I am \(\times \%\) sure that the ball drawn from the urn is black or yellow. Therefore, I am \(33 \%\) sure that the ball drawn from the urn is red.

\section*{Argument 2 for Bet 2}

I am \(\triangle\) \% sure that the ball drawn from the urn is red.
I am \(\times \%\) sure that the ball drawn from the urn is black or yellow.
Therefore, I am at least \(0 \%\) and at most \(67 \%\) sure that the ball drawn from the urn is black.

Question: Which argument is stronger to know which bet to choose? Tick a box.
\(\square\) Argument 1
\(\square\) Argument 2

\section*{Task material (Argument ranking task, persuasive condition)}

\section*{Argument 1 for Bet 1}

I am \(\triangle \%\) sure that the ball drawn from the urn is red.
I am 4 sure that the ball drawn from the urn is black or yellow. Therefore, I am \(33 \%\) sure that the ball drawn from the urn is red.

\section*{Argument 2 for Bet 2}

I am \(\triangle\) \% sure that the ball drawn from the urn is red.
I am \(\times \%\) sure that the ball drawn from the urn is black or yellow.
Therefore, I am at least \(0 \%\) and at most \(67 \%\) sure that the ball drawn from the urn is black.

Question Which argument convinces you stronger which bet to choose? Tick a box.

\section*{\(\square\) Argument 1}
\(\square\) Argument 2

\section*{Task material (Argument rating task, epistemic condition)}

\section*{Argument 2 for Bet 2}

I am \(\times \%\) sure that the ball drawn from the urn is red.
I am \(\times \%\) sure that the ball drawn from the urn is black or yellow.
Therefore, I am at least \(0 \%\) and at most \(67 \%\) sure that the ball drawn from the urn is black.

\section*{Task material (Argument rating task, epistemic condition)}

\section*{Argument 2 for Bet 2}

I am \(\times \%\) sure that the ball drawn from the urn is red.
I am \(\times \%\) sure that the ball drawn from the urn is black or yellow.
Therefore, I am at least \(0 \%\) and at most \(67 \%\) sure that the ball drawn from the urn is black.

Question: How strong is Argument 2 for choosing Bet 2? Mark your response on the following scale with a cross.

\section*{Task material (Argument rating task, persuasive condition)}

\section*{Argument 2 for Bet 2}

I am \(\times \%\) sure that the ball drawn from the urn is red.
I am \(\times \%\) sure that the ball drawn from the urn is black or yellow.
Therefore, I am at least \(0 \%\) and at most \(67 \%\) sure that the ball drawn from the urn is black.

Question: How strong is Argument 2 for convincing to choose Bet 2? Mark your response on the following scale with a cross.

\section*{Structure of booklets}
1. Introduction of task material
2. Argument ranking tasks
3. Argument rating tasks
4. (original) Ellsberg tasks

\section*{Results}
- no significant differences among the groups (epistemic/persuasive, presented percentages)
- ranking and rating responses are consistent with Ellsberg responses

\section*{Results}
- no significant differences among the groups (epistemic/persuasive, presented percentages)
- ranking and rating responses are consistent with Ellsberg responses

Table: Percentages of argument preferences in the argument ranking tasks and in the (original) Ellsberg tasks (\(N=60\)).
\begin{tabular}{ccccccc}
\hline\(\%\) & arg. ranking & Ellsberg & & \% & arg. ranking & Ellsberg \\
\cline { 1 - 2 } \cline { 5 - 7 } Bet1 & 73,3 & 93,3 & & Bet3 & 25,0 & 23,3 \\
Bet2 & 26,7 & 6,7 & & Bet4 & 75,0 & 76,7 \\
\hline
\end{tabular}

\section*{Results}
- no significant differences among the groups (epistemic/persuasive, presented percentages)
- ranking and rating responses are consistent with Ellsberg responses

Table: Percentages of argument preferences in the argument ranking tasks and in the (original) Ellsberg tasks (\(N=60\)).
\begin{tabular}{ccccccc}
\hline\(\%\) & arg. ranking & Ellsberg & & \% & arg. ranking & Ellsberg \\
\cline { 1 - 1 } \cline { 5 - 8 } Bet1 & 73,3 & 93,3 & & Bet3 & 25,0 & 23,3 \\
Bet2 & 26,7 & 6,7 & & Bet4 & 75,0 & 76,7 \\
\hline
\end{tabular}

Table: Means and standard deviations (SD) of the argument strength ratings \(\mathfrak{s}(\cdot)\) on a scale from 0 ("extremely weak") to 10 ("extremely strong"; \(N=60\)).
\begin{tabular}{ccccc}
\hline & \(\mathfrak{s}\left(\mathcal{A}_{1}\right)\) & \(\mathfrak{s}\left(\mathcal{A}_{2}\right)\) & \(\mathfrak{s}\left(\mathcal{A}_{3}\right)\) & \(\mathfrak{s}\left(\mathcal{A}_{4}\right)\) \\
\hline Mean & 5,20 & 3,98 & 5,77 & 6,95 \\
\(S D\) & 2,64 & 2,58 & 1,74 & 1,87 \\
\hline
\end{tabular}

\section*{Properties of arguments and relations to Adams' p-validity}

\section*{Table of contents}

\section*{Introduction}

Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
Inferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks
Nested conditionals
Generalised modus ponens
An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
Existential import
Figure 1: coherent probabilistic syllogisms
Syllogistic sentences as defaults
Concluding remarks

\section*{References}

\section*{Properties of arguments}

An argument is a pair consisting of a premise set and a conclusion.
- An argument is logically valid if and only if it is impossible that all premises are true and the conclusion is false.

\section*{Properties of arguments}

An argument is a pair consisting of a premise set and a conclusion.
- An argument is logically valid if and only if it is impossible that all premises are true and the conclusion is false.
- An argument is \(p\)-valid if and only if the uncertainty of the conclusion of a valid inference cannot exceed the sum of the uncertainties of its premises (where "uncertainty of \(X\) " is defined by \(1-P(X)\)) (Adams, 1975).

\section*{Properties of arguments}

An argument is a pair consisting of a premise set and a conclusion.
- An argument is logically valid if and only if it is impossible that all premises are true and the conclusion is false.
- An argument is \(p\)-valid if and only if the uncertainty of the conclusion of a valid inference cannot exceed the sum of the uncertainties of its premises (where "uncertainty of \(X\) " is defined by \(1-P(X)\)) (Adams, 1975).
- An argument is probabilistically informative if and only if it is possible that the premise probabilities constrain the conclusion probability. I.e., if the coherent probability interval of its conclusion is not necessarily equal to the unit interval \([0,1]\) (Pfeifer \& Kleiter, 2006a).

\section*{Log. valid-prob. informative (Pfeifer \& Kleiter (2009). Journal of Applied Logic. Figure 1)}

Log. valid-prob. informative (Pfeifer \& Kleiter (2009). Journal of Applied Logic. Figure 1)

\section*{Table of contents}

\author{
Introduction
}
```

Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
Inferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks
Nested conditionals
Generalised modus ponens
An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment
Properties of arguments and relations to Adams' p-validity

```

Coh. based prob. semantics of categ. Syllogisms
Existential import
Figure 1: coherent probabilistic syllogisms
Syllogistic sentences as defaults

\section*{Concluding remarks}

References

\section*{Motivation}
- Long history in psychology (starting with Störring (1908))

\section*{Motivation}
- Long history in psychology (starting with Störring (1908))
- Aristotelian syllogisms:
- either too strict (universal, \(\forall\)) or too weak (existential, \(\exists\)) quantifiers
- not a language for uncertainty / vagueness

\section*{Motivation}
- Long history in psychology (starting with Störring (1908))
- Aristotelian syllogisms:
- either too strict (universal, \(\forall\)) or too weak (existential, \(\exists\)) quantifiers
- not a language for uncertainty / vagueness
- Developing coherence based probability logic semantics for Aristotelian syllogisms

Coh. based prob. semantics of categ. Syllogisms

\section*{Transitivity}
\[
A \rightarrow B, B \rightarrow C, \text { therefore } A \rightarrow C
\]

\section*{Transitivity}
\[
A \rightarrow B, B \rightarrow C, \text { therefore } A \rightarrow C
\]

\section*{Transitivity}
\[
A \rightarrow B, B \rightarrow C, \text { therefore } A \rightarrow C
\]

\section*{Nonmonotonic Transitivity}

\section*{\(A \not B B, B \vdash C\), \(A \not C C\)}

Nonmonotonic Transitivity
\(A \nsim B, B \nsim C\), \(A \nsim C\)

Nonmonotonic Transitivity
\(A \not B B, B \not \subset C\), \(A \nsim C\)

\section*{Selected forms of transitivity \& empirical evidence}
\begin{tabular}{ll}
\hline \hline Name & Formalization \\
\hline Transitivity & \(A \rightarrow B, B \rightarrow C\), therefore \(A \rightarrow C\)
\end{tabular}

\section*{Selected forms of transitivity \& empirical evidence}
\begin{tabular}{ll}
\hline \hline Name & Formalization \\
\hline Transitivity & \(A \rightarrow B, B \rightarrow C\), therefore \(A \rightarrow C\) \\
& \(P(B \mid A)=x, P(C \mid B)=y \therefore P(C \mid A) \in[0,1]\) \\
\hline
\end{tabular}

\section*{Selected forms of transitivity \& empirical evidence}
\begin{tabular}{ll}
\hline \hline Name & Formalization \\
\hline Transitivity & \(A \rightarrow B, B \rightarrow C\), therefore \(A \rightarrow C\) \\
& \(P(B \mid A)=x, P(C \mid B)=y \therefore P(C \mid A) \in[0,1]\) \\
\hline Right weakening & \(P(B \mid A)=x, \models(B \supset C) \therefore P(C \mid A) \in[x, 1]\)
\end{tabular}

\section*{Selected forms of transitivity \& empirical evidence}
\begin{tabular}{ll}
\hline \hline Name & Formalization \\
\hline Transitivity & \(A \rightarrow B, B \rightarrow C\), therefore \(A \rightarrow C\) \\
& \(P(B \mid A)=x, P(C \mid B)=y \therefore P(C \mid A) \in[0,1]\) \\
\hline Right weakening & \(P(B \mid A)=x, \models(B \supset C) \therefore P(C \mid A) \in[x, 1]\) \\
Cut & \(P(B \mid A)=x, P(C \mid A \wedge B)=y\), \\
& \(\therefore P(C \mid A) \in[x y, 1-x+x y]\) \\
\hline \hline
\end{tabular}

\section*{Selected forms of transitivity \& empirical evidence}
\begin{tabular}{ll}
\hline \hline Name & Formalization \\
\hline Transitivity & \(A \rightarrow B, B \rightarrow C\), therefore \(A \rightarrow C\) \\
& \(P(B \mid A)=x, P(C \mid B)=y \therefore P(C \mid A) \in[0,1]\) \\
\hline Right weakening & \(P(B \mid A)=x, \models(B \supset C) \therefore P(C \mid A) \in[x, 1]\) \\
Cut & \(P(B \mid A)=x, P(C \mid A \wedge B)=y\), \\
& \(\therefore P(C \mid A) \in[x y, 1-x+x y]\) \\
\hline \hline
\end{tabular}
- Experimental result: Right weakening is endorsed by almost all participants (Pfeifer \& Kleiter, 2006b, 2010)

\section*{Selected forms of transitivity \& empirical evidence}
\begin{tabular}{ll}
\hline \hline Name & Formalization \\
\hline Transitivity & \(A \rightarrow B, B \rightarrow C\), therefore \(A \rightarrow C\) \\
& \(P(B \mid A)=x, P(C \mid B)=y \therefore P(C \mid A) \in[0,1]\) \\
\hline Right weakening & \(P(B \mid A)=x, \models(B \supset C) \therefore P(C \mid A) \in[x, 1]\) \\
Cut & \(P(B \mid A)=x, P(C \mid A \wedge B)=y\), \\
& \(\therefore P(C \mid A) \in[x y, 1-x+x y]\) \\
\hline \hline
\end{tabular}
- Experimental result: Right weakening is endorsed by almost all participants (Pfeifer \& Kleiter, 2006b, 2010)
- Observation: Deleting " \(A\) " in Cut yields Modus Ponens.

\section*{Selected forms of transitivity \& empirical evidence}
\begin{tabular}{ll}
\hline \hline Name & Formalization \\
\hline Transitivity & \(A \rightarrow B, B \rightarrow C\), therefore \(A \rightarrow C\) \\
& \(P(B \mid A)=x, P(C \mid B)=y \therefore P(C \mid A) \in[0,1]\) \\
\hline Right weakening & \(P(B \mid A)=x, \models(B \supset C) \therefore P(C \mid A) \in[x, 1]\) \\
Cut & \(P(B \mid A)=x, P(C \mid A \wedge B)=y\), \\
& \(\therefore P(C \mid A) \in[x y, 1-x+x y]\) \\
\hline \hline
\end{tabular}
- Experimental result: Right weakening is endorsed by almost all participants (Pfeifer \& Kleiter, 2006b, 2010)
- Observation: Deleting " \(A\) " in Cut yields Modus Ponens.
- Experimental result: Non-probabilistic tasks: endorsement rate of 89-100\% (Evans et al., 1993); probabilistic tasks: \(63 \%-100 \%\) coherent responses (Pfeifer \& Kleiter, 2007)

\section*{Syllogistic types of sentences and figures}
\begin{tabular}{ccc}
\hline \multicolumn{2}{c}{ Name of Proposition Type } & \(P L\) formula \\
\hline (A) & Universal affirmative & \(\forall x(S x \supset P x) \wedge \exists x S x\) \\
(I) & Particular affirmative & \(\exists x(S x \wedge P x)\) \\
(E) & Universal negative & \(\forall x(S x \supset \neg P x) \wedge \exists x S x\) \\
(O) & Particular negative & \(\exists x(S x \wedge \neg P x)\) \\
\hline \hline
\end{tabular}

\section*{Syllogistic types of sentences and figures}
\begin{tabular}{ccc}
\hline \hline \multicolumn{2}{c}{ Name of Proposition Type } & \(P L\) formula \\
\hline (A) & Universal affirmative & \(\forall x(S x \supset P x) \wedge \exists x S x\) \\
(I) & Particular affirmative & \(\exists x(S x \wedge P x)\) \\
(E) & Universal negative & \(\forall x(S x \supset \neg P x) \wedge \exists x S x\) \\
(O) & Particular negative & \(\exists x(S x \wedge \neg P x)\) \\
\hline \hline
\end{tabular}
\begin{tabular}{lccccc}
\hline \hline & \multicolumn{5}{c}{ Figure name } \\
\cline { 2 - 5 } & 1 & 2 & 3 & 4 \\
\hline Premise 1 & \(M P\) & \(P M\) & \(M P\) & \(P M\) \\
Premise 2 & \(S M\) & \(S M\) & & \(M S\) & \(M S\) \\
\cline { 6 - 6 } \cline { 5 - 5 } & & \(S P\) & & \(S P\) & \\
Conclusion & \(S P\) & \(S P\) \\
\hline \hline
\end{tabular}

\section*{Syllogistic types of sentences and figures}
\begin{tabular}{ccc}
\hline \hline \multicolumn{2}{c}{ Name of Proposition Type } & \(P L\) formula \\
\hline (A) & Universal affirmative & \(\forall x(S x \supset P x) \wedge \exists x S x\) \\
(I) & Particular affirmative & \(\exists x(S x \wedge P x)\) \\
(E) & Universal negative & \(\forall x(S x \supset \neg P x) \wedge \exists x S x\) \\
(O) & Particular negative & \(\exists x(S x \wedge \neg P x)\) \\
\hline \hline
\end{tabular}
\begin{tabular}{lccccc}
\hline \hline & \multicolumn{5}{c}{ Figure name } \\
\cline { 2 - 5 } & 1 & 2 & 3 & 4 \\
\hline Premise 1 & \(M P\) & \(P M\) & \(M P\) & \(P M\) \\
Premise 2 & \(S M\) & \(S M\) & & \(M S\) & \(M S\) \\
\cline { 6 - 6 } \cline { 5 - 5 } & & \(S P\) & & \(S P\) & \\
Conclusion & \(S P\) & \(S P\) \\
\hline \hline
\end{tabular}

256 possible syllogisms, 24 Aristotelianly-valid, 9 require \(\exists x S x\)

Explicit existence assumptions Implicit existence assumptions
\begin{tabular}{lclll}
\hline Figure I & AAA & Barbara & AAI & Barbari \\
& AII & Darii & EAO & Celaront \\
& EAE & Celarent & & \\
\hline Figure II & EIO & Ferio & & \\
& AEE & Camestres & AEO & Camestrop \\
& AOO & Baroco & EAO & Cesaro \\
& EAE & Cesare & & \\
\hline Figure III & EIO & Festino & & \\
& AII & Datisi & AAI & Darapti \\
& EIO & Ferison & EAO & Felapton \\
& IAI & Disamis & & \\
\hline Figure IV & AEE & Camenes & AAI & Bramantip \\
& EIO & Fresison & AEO & Camenop \\
& IAI & Dimaris & EAO & Fesapo \\
\hline
\end{tabular}

\section*{Example: Syllogism}
(A) All philosophers are mortal.
(A) All members of the Vienna Circle are philosophers.
(A) All members of the Vienna Circle are mortal.

\section*{Modus Barbara}

> \begin{tabular}{ll} (A) & All \(M\) are \(P\) \\ (A) & All \(S\) are \(M\) \\ \hline (A) & All \(S\) are \(P\) \end{tabular}

\section*{Modus Barbara}
\[
\begin{array}{ll}
\text { (A) } & \text { All } M \text { are } P \\
\text { (A) } & \text { All } S \text { are } M \\
\hline \text { (A) } & \text { All } S \text { are } P
\end{array}
\]
\[
\begin{array}{lll}
\text { (A) } & \forall x(M x \supset P x) & (\wedge \exists x M x) \\
\text { (A) } & \forall x(S x \supset M x) & (\wedge \exists x S x) \\
\hline \text { (A) } & \forall x(S x \supset P x) &
\end{array}
\]

\section*{Modus Barbara}
\[
\begin{array}{ll}
\text { (A) } & \text { All } M \text { are } P \\
\text { (A) } & \text { All } S \text { are } M \\
\hline \text { (A) } & \text { All } S \text { are } P
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline (A) & \multicolumn{2}{|l|}{\(\forall x(M x \supset P x)\)} & \multicolumn{2}{|l|}{\((\wedge \exists x M x)\)} \\
\hline (A) & \multicolumn{2}{|l|}{\(\forall x(S x \supset M x)\)} & \multicolumn{2}{|l|}{\((\wedge \exists x S x)\)} \\
\hline (A) & \multicolumn{4}{|l|}{\(\forall x(S x \supset P x)\)} \\
\hline & \multicolumn{4}{|c|}{Figure name} \\
\hline & 1 & 2 & 3 & 4 \\
\hline Premise 1 & MP & PM & MP & PM \\
\hline Premise 2 & \(S M\) & SM & MS & MS \\
\hline Conclusion & SP & SP & SP & SP \\
\hline
\end{tabular}
... transitive structure of Figure 1

\section*{Modus Barbarí}

> \begin{tabular}{ll} (A) & All \(M\) are \(P\) \\ (A) & All \(S\) are \(M\) \\ \hline (I) & At least one \(S\) is \(P\) \end{tabular}

\section*{Modus Barbarí}
\begin{tabular}{l}
(A) \(\quad\) All \(M\) are \(P\) \\
(A) \(\quad\) All \(S\) are \(M\) \\
\hline (I) At least one \(S\) is \(P\)
\end{tabular}
\[
\begin{array}{lll}
\text { (A) } & \forall x(M x \supset P x) & (\wedge \exists x M x) \\
\text { (A) } & \forall x(S x \supset M x) & \wedge \exists x S x \\
\hline \text { (A) } & \exists x(S x \wedge P x) &
\end{array}
\]

\section*{Modus Darii}
(A) All \(M\) are \(P\)
\begin{tabular}{ll}
(I) At least one \(S\) is \(M\) \\
\hline (I) At least one \(S\) is \(P\)
\end{tabular}
\[
\begin{array}{lll}
\text { (A) } & \forall x(M x \supset P x) & (\wedge \exists x M x) \\
\text { (I) } & \exists x(S x \wedge M x) & (\wedge \exists x S x) \\
\hline \text { (I) } & \exists x(S x \wedge P x) &
\end{array}
\]

\section*{Previous work: Johann-Heinrich Lambert}

*1728 in Mulhouse, former exclave of Switzerland (now Alsace, France) \(\dagger 1777\) in Berlin

\section*{Previous work: Johann-Heinrich Lambert}

Source: Wikimedia Commons http://tinyurl.com/lbjcruu
*1728 in Mulhouse, former exclave of Switzerland (now Alsace, France) \(\dagger 1777\) in Berlin

Important contributions to
- mathematics (e.g., proof that \(\pi\) is irrational)
- physics (particularly optics), astronomy and map projections
- philosophy
- distinction between subjective and objective appearances
- influenced, among others, I. Kant and J. S. Mill
- logic (syllogisms)

\section*{Previous work: Johann-Heinrich Lambert}

Source: Wikimedia Commons http://tinyurl.com/lbjcruu

Source: DTA:SUB Göttingen, 8 PHIL II, 1905:2 http://tinyurl.com/ldpuc5c

\section*{Previous work: Johann-Heinrich Lambert (1764)}
§. 189. Man babe nun zmeen Saibe
\(\frac{3}{4} \mathrm{~A}\) fini \(B\)
C ift A.

We have now two sentences (p. 358f) exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) \(C\) is an individuum which is \(A\)

\section*{Previous work: Johann-Heinrich Lambert (1764)}
§. 189. Man babe nun zmeen Saibe
\(\frac{3}{4} \mathrm{~A}\) fini B
C ift A.
[...]
Wenn man demuad) ben Sduluß zieft, baß̉ C , B If one draws an inference based on this, that \(C\)
 geht ibm \(\frac{1}{4}\) an ber Geemifhbeit \(\mathfrak{a b}\), baz mill fagen, jeine \(\mathfrak{Z a b r r i d f e i n l i d f f e i t ~ i f t ~} \frac{3}{4}\). Diefez bruiten wir nun folgendermaken auz:

We have now two sentences (p. 358f) exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) \(C\) is an individuum which is \(A\) were \(B\), then this inference is not completely certain, rather it lacks \(\frac{1}{4}\) certainty. This means its probability is \(\frac{3}{4}\). We express this now as follows:

\section*{Previous work: Johann-Heinrich Lambert (1764)}
§. 189. Man babe nun zmeen Saibe
\(\frac{3}{4} \mathrm{~A}\) find B
C ift A.
[...]
Wenn man bemuad) ben Sdxluff zieft, bák \(\mathrm{C}, \mathrm{B}\)
 geht ibm \(\frac{1}{4}\) an ber Geemifhbeit \(\mathfrak{a b}\), baz mill fagen,
 folgentormaken auz:

C iff \(\frac{3}{4} \mathrm{~B}\).

We have now two sentences (p. 358f) exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) \(C\) is an individuum which is \(A\)

If one draws an inference based on this, that \(C\) were \(B\), then this inference is not completely certain, rather it lacks \(\frac{1}{4}\) certainty. This means its probability is \(\frac{3}{4}\). We express this now as follows:
\(C\left(\right.\) is \(\left.\frac{3}{4}\right) B\).

\section*{Previous work: Johann-Heinrich Lambert (1764)}
§. 189. Man babe nun zmeen Saibe
\(\frac{3}{4} \mathrm{~A}\) find B
C ift A.
[...]
 fen, fo iff diefer Sodluß nidyt noillig gemif́, fonbern ez geht ibm \(\frac{1}{4}\) an ber Gemifibheit \(\mathfrak{a b}\), baz mill fagen, jeine \(\mathfrak{Z a b r v i d f e i n l i d f f e i t ~ i f t ~} \frac{3}{4}\). Diefes bruiden wir nun folgentormaken auz:

C iff \(\frac{3}{4} \mathrm{~B}\).
[...] fo merten mir an, báb der zmifdern baz
 niddt baz \(\mathfrak{P r a ̈ b i c a t , ~ f o n b e r n ~ b a z ~} \mathfrak{Z i n b m o i r t g e n ~ a n g e l j e . ~}\) [...] ez jev, das man ibn worfege oder anbánge.

We have now two sentences (p. 358f) exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) \(C\) is an individuum which is \(A\)

If one draws an inference based on this, that \(C\) were \(B\), then this inference is not completely certain, rather it lacks \(\frac{1}{4}\) certainty. This means its probability is \(\frac{3}{4}\). We express this now as follows:
\(C\left(\right.\) is \(\left.\frac{3}{4}\right) B\).
we note, that the fraction between the copula "is" and the predicate \(B\) does not relate to the predicate, but to the copula [...] it is pre- or postfixed.

\section*{Previous work: Johann-Heinrich Lambert (1764)}
§. 190. [...]
\(\frac{3}{4} \mathrm{~A}\) fint B
C if A
folgliid) \(\mathrm{C} \frac{3}{4}\) if B .
(p. 359)

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) \(C\) is an individuum which is \(A\)
Therefore, \(C\left(\frac{3}{4}\right.\) is) \(B\).

\section*{Previous work: Johann-Heinrich Lambert (1764)}
§. 190. [...]
\(\frac{3}{4} \mathrm{~A}\) find B
C ift A
folglidid) \(\mathrm{C} \frac{3}{4}\) if B .
\(\frac{3}{4} \mathrm{~A}\) find B .
\(\mathfrak{H}\) Ille C fint A .
\(\mathfrak{A l l e} \mathrm{C} \frac{3}{4}\) find B .
(p. 359)

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) \(C\) is an individuum which is \(A\)
Therefore, \(C\left(\frac{3}{4}\right.\) is) \(B\).
(p. 360)

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) All \(C\) are \(A\)
All \(C\) (\(\frac{3}{4}\) are) \(B\).

\section*{Previous work: Johann-Heinrich Lambert (1764)}
§. 190. [...]
\(\frac{3}{4} \mathrm{~A}\) fino B
C ift A
folglide \(C \frac{3}{4}\) if B .
\(\frac{3}{4} \mathrm{~A}\) find B .
\(\mathfrak{H l l e} \mathrm{C}\) finb A .
\(\mathfrak{H l l e} \mathrm{C} \frac{3}{4}\) find B .
\(\frac{3}{4} \mathrm{~A}\) find B .
Eftided C find A.
Eftidide C \(\frac{3}{4}\) find B.
(p. 359)

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) \(C\) is an individuum which is \(A\)
Therefore, \(C\left(\frac{3}{4}\right.\) is) \(B\).
(p. 360)

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) All \(C\) are \(A\)
All \(C\left(\frac{3}{4}\right.\) are \() B\).

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) Many \(C\) are \(A\)
Many C (\(\frac{3}{4}\) are) \(B\).

\section*{Previous work: Johann-Heinrich Lambert (1764)}
§. 190. [...]
\(\frac{3}{4} \mathrm{~A}\) fint B
C if A
folglide) \(\mathrm{C} \frac{3}{4} \mathrm{if} \mathrm{B}\).
\(\frac{3}{4} \mathrm{~A}\) find B .
\(\mathfrak{U l l e} \mathrm{C}\) find A .
\(\mathfrak{H l l e} \mathrm{C} \frac{3}{4}\) find B .
\(\frac{3}{4} \mathrm{~A}\) fint B .
Eftided C find A.
Eftilide C \(\frac{3}{4}\) find B.
\(\frac{3}{4} \mathrm{~A}\) find B .
\(\frac{2}{} \mathrm{finio} \mathrm{A}\).
\(\frac{3}{3} \mathrm{C} \frac{3}{4}\) fint B .
(p. 359)

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\)
\(C\) is an individuum which is \(A\)
Therefore, \(C\left(\frac{3}{4}\right.\) is) \(B\).
(p. 360)

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) All \(C\) are \(A\)
All \(C\left(\frac{3}{4}\right.\) are \() B\).

Exactly \(\frac{3}{4}\) of all \(A\) have predicate \(B\) Many \(C\) are \(A\)
Many \(C\left(\frac{3}{4}\right.\) are \() B\).

Exactly \(\frac{3}{4}\) of all \(A\) are \(B\)
Exactly \(\frac{2}{3}\) of all \(C\) are \(A\)
Exactly \(\frac{2}{3}\) of all \(C\left(\frac{3}{4}\right.\) are) \(B\).

\section*{The probability heuristics model (Chater \& Oaksford, 1999; Oaksford \& Chater, 2009)}

Definitions of the basic sentences:
\begin{tabular}{|c|c|c|}
\hline & Quantified statement & Prob. interpretation \\
\hline (A) & All \(S\) are \(P\) & \(p(P \mid S)=1\) \\
\hline (E) & No \(S\) is \(P\) & \(p(P \mid S)=0\) \\
\hline (I) & Some \(S\) are \(P\) & \(p(P \mid S)>0\) \\
\hline (0) & Some \(S\) are not-P & \(p(P \mid S)<1\) \\
\hline
\end{tabular}

The probability heuristics model (Chater \& Oaksford, 1999; Oaksford \& Chater, 2009)

Definitions of the basic sentences:
\begin{tabular}{llrr}
\hline \hline & Quantified statement & & Prob. interpretation \\
\cline { 2 - 2 } (A) & All \(S\) are \(P\) & \(p(P \mid S)=1\) \\
(E) & No \(S\) is \(P\) & \(p(P \mid S)=0\) \\
(I) & Some \(S\) are \(P\) & & \(p(P \mid S)>0\) \\
(O) & Some \(S\) are not- \(P\) & & \(p(P \mid S)<1\) \\
& Most \(S\) are \(P\) & & \(1-\Delta<p(P \mid S)<1\) \\
& Few \(S\) are \(P\) & & \(0<p(P \mid S)<\Delta\) \\
\hline
\end{tabular}
... where \(\Delta\) is small

The probability heuristics model (Chater \& Oaksford, 1999, p. 201)

FIG. 2. The probabilistic semantics for the quantifers AMFIEO.

\section*{The probability heuristics model: Probabilistic syllogisms}
- Assumption: Conditional independence between the end terms (i.e., \(S\) and \(P\)) given the middle term (i.e., \(M\)):
\[
p(S \wedge P \mid M)=p(S \mid M) p(P \mid M)
\]

\section*{The probability heuristics model: Probabilistic syllogisms}
- Assumption: Conditional independence between the end terms (i.e., \(S\) and \(P\)) given the middle term (i.e., \(M\)):
\[
p(S \wedge P \mid M)=p(S \mid M) p(P \mid M)
\]
- Sample reconstruction of Modus Barbara (assumed implicitly \(p(S)>0, p(M)>0)\) :
(A) \(\quad p(P \mid M)=1\)
(A) \(\quad p(M \mid S)=1\)
\(\left(\mathrm{Cl}\right.\) assumption) \(\frac{p(S \wedge P \mid M)=p(S \mid M) p(P \mid M)}{p(P \mid S)=1}\)

\section*{The probability heuristics model: Probabilistic syllogisms}
- Assumption: Conditional independence between the end terms (i.e., \(S\) and \(P\)) given the middle term (i.e., \(M\)):
\[
p(S \wedge P \mid M)=p(S \mid M) p(P \mid M)
\]
- Sample reconstruction of Modus Barbara (assumed implicitly \(p(S)>0, p(M)>0)\) :
\[
\begin{array}{ll}
\text { (A) } & p(P \mid M)=1 \\
\text { (A) } & p(M \mid S)=1
\end{array}
\]
\(\begin{aligned}(\mathrm{Cl} \text { assumption) } & \frac{p(S \wedge P \mid M)=p(S \mid M) p(P \mid M)}{p(P \mid S)=1}\end{aligned}\)

Note, that we do not assume \(p(S)>0\) and \(p(M)>0\) in the coherence framework. Moreover, if \(p(S \mid M)=0\), then \(p(S \wedge P \mid M)=0\).

\section*{The probability heuristics model: Probabilistic syllogisms}
- Assumption: Conditional independence between the end terms (i.e., \(S\) and \(P\)) given the middle term (i.e., \(M\)):
\[
p(S \wedge P \mid M)=p(S \mid M) p(P \mid M)
\]
- Sample reconstruction of Modus Barbara (assumed implicitly \(p(S)>0, p(M)>0)\) :
\[
\begin{array}{ll}
\text { (A) } & p(P \mid M)=1 \\
\text { (A) } & p(M \mid S)=1
\end{array}
\]
\(\begin{aligned}(\mathrm{Cl} \text { assumption) } & \frac{p(S \wedge P \mid M)=p(S \mid M) p(P \mid M)}{p(P \mid S)=1}\end{aligned}\)

Note, that we do not assume \(p(S)>0\) and \(p(M)>0\) in the coherence framework. Moreover, if \(p(S \mid M)=0\), then \(p(S \wedge P \mid M)=0\). Then, the premises are satisfied but \(0 \leq p(P \mid S) \leq 1\) is coherent. Thus, Modus Barbara does not hold.

\section*{Towards Probabilistic Modus Barbara}
\[
\begin{array}{ll}
\text { All } M \text { are } P & p(P \mid M)=1 \\
\text { All } S \text { are } M & \\
\hline \text { All } S \text { are } P & \\
& p(M \mid S)=1 \\
\hline \leq p(P \mid S) \leq 1
\end{array}
\]

\section*{Towards Probabilistic Modus Barbara}
\[
\begin{array}{ll}
\text { All } M \text { are } P & p(P \mid M)=1 \\
\text { All } S \text { are } M & \\
\cline { 1 - 1 } & \frac{p(M \mid S)=1}{0 \leq p(P \mid S) \leq 1} S \text { are } P
\end{array}
\]

\section*{Towards Probabilistic Modus Barbara}
\[
\begin{array}{ll}
\text { All } M \text { are } P & p(P \mid M)=1 \\
\text { All } S \text { are } M & \\
\cline { 1 - 1 } & \frac{p(M \mid S)=1}{0 \leq p(P \mid S) \leq 1} S \text { are } P
\end{array}
\]

If \(p(S)=\gamma\) and \(p(M \mid S)=1\), then \(\gamma \leq p(M) \leq 1\)

\section*{Existential import: Different options}
- Positive probability of the conditioning event, e.g.:

All \(S\) are \(P: p(S)>0\)
- \(p(S \mid M)>0(\) and \(p(M \mid P)>0)\) (Dubois, Godo, López de Màntaras, \& Prade, 1993)

\section*{Existential import: Different options}
- Positive probability of the conditioning event, e.g.:
\[
\text { All } S \text { are } P: p(S)>0
\]
- \(p(S \mid M)>0\) (and \(p(M \mid P)>0)\) (Dubois, Godo, López de Mântraras, \& Prade, 1993)
- Replacing the first premise by a logical constraint, e.g.:
\[
\begin{aligned}
& \vDash(M \supset P) \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
\]
- Strengthening the antecedent of the first premise, e.g.:
\[
\begin{aligned}
& p(P \mid S \wedge M)=1 \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
\]

\section*{Existential import: Different options}
- Positive probability of the conditioning event, e.g.:
\[
\text { All } S \text { are } P: p(S)>0
\]
- \(p(S \mid M)>0(\) and \(p(M \mid P)>0)\) (Dubois, Godo, López de Màntaras, \& Prade, 1993)
- Replacing the first premise by a logical constraint, e.g.:
\[
\begin{aligned}
& \vDash(M \supset P) \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
\]
- Strengthening the antecedent of the first premise, e.g.:
\[
\begin{aligned}
& p(P \mid S \wedge M)=1 \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
\]
- Conditional event El: Positive probability of the conditioning event, given the disjunction of all conditioning events (Gilio, Pfeifer, \& Sanfilippo, 2016):
\[
\begin{aligned}
& p(P \mid M)=1 \\
& p(M \mid S)=1 \\
& p(S \mid S \vee M)>0 \\
& \hline p(P \mid S)=1
\end{aligned}
\]
- \(p(S \mid S \vee M)>0\) neither implies \(p(S)>0\) nor \(p(S \mid M)>0\)

\section*{Probabilistic Figure 1, conditional event El}
\begin{tabular}{llll}
\hline \hline \multicolumn{2}{c}{ Premises } & E.I. & Conclusion \\
\cline { 1 - 2 }\(p(P \mid M)\) & \(p(M \mid S)\) & \(p(S \mid S \vee M)\) & \(p(P \mid S)\) \\
\(x\) & \(y\) & \(t\) & {\(\left[z^{\prime}, z^{\prime \prime}\right]\)} \\
\hline\(x\) & \(y\) & 0 & {\([0,1]\)}
\end{tabular}

\section*{Probabilistic Figure 1, conditional event EI}
\begin{tabular}{lllll}
\hline \hline \multicolumn{2}{c}{ Premises } & E.I. & Conclusion & \\
\cline { 1 - 2 }\(p(P \mid M)\) & \(p(M \mid S)\) & \(p(S \mid S \vee M)\) & \(p(P \mid S)\) & \\
\(x\) & \(y\) & \(t\) & {\(\left[z^{\prime}, z^{\prime \prime}\right]\)} & \\
\hline\(x\) & \(y\) & 0 & {\([0,1]\)} & \\
1 & 1 & \(t>0\) & {\([1,1]\)} & (Modus Barbara)
\end{tabular}

\section*{Probabilistic Figure 1, conditional event EI}
\begin{tabular}{lllll}
\hline \hline \multicolumn{2}{c}{ Premises } & E.I. & Conclusion & \\
\cline { 1 - 2 }\(p(P \mid M)\) & \(p(M \mid S)\) & \(p(S \mid S \vee M)\) & \(p(P \mid S)\) & \\
\(x\) & \(y\) & \(t\) & {\(\left[z^{\prime}, z^{\prime \prime}\right]\)} & \\
\hline\(x\) & \(y\) & 0 & {\([0,1]\)} & \\
1 & 1 & \(t>0\) & {\([1,1]\)} & (Modus Barbara) \\
1 & \(y\) & \(t>0\) & {\([y, 1]\)} &
\end{tabular}

\section*{Probabilistic Figure 1, conditional event EI}
\begin{tabular}{lllll}
\hline \hline \multicolumn{2}{c}{ Premises } & E.I. & Conclusion & \\
\cline { 1 - 2 }\(p(P \mid M)\) & \(p(M \mid S)\) & \(p(S \mid S \vee M)\) & \(p(P \mid S)\) & \\
\(x\) & \(y\) & \(t\) & {\(\left[z^{\prime}, z^{\prime \prime}\right]\)} & \\
\hline\(x\) & \(y\) & 0 & {\([0,1]\)} & (Modus Barbara) \\
1 & 1 & \(t>0\) & {\([1,1]\)} & \\
1 & \(y\) & \(t>0\) & {\([y, 1]\)} & \\
.9 & 1 & 1 & {\([.9, .9]\)} & \\
.9 & 1 & .5 & {\([.8,1]\)} & \\
.9 & 1 & .2 & {\([.5,1]\)} & \\
.9 & 1 & .1 & {\([0,1]\)} &
\end{tabular}

\section*{Probabilistic Figure 1, conditional event El}
\begin{tabular}{lllll}
\hline \hline \multicolumn{2}{c}{ Premises } & E.I. & Conclusion & \\
\cline { 1 - 2 }\(p(P \mid M)\) & \(p(M \mid S)\) & \(p(S \mid S \vee M)\) & \(p(P \mid S)\) & \\
\(x\) & \(y\) & \(t\) & {\(\left[z^{\prime}, z^{\prime \prime}\right]\)} & \\
\hline\(x\) & \(y\) & 0 & {\([0,1]\)} & (Modus Barbara) \\
1 & 1 & \(t>0\) & {\([1,1]\)} & \\
1 & \(y\) & \(t>0\) & {\([y, 1]\)} & \\
.9 & 1 & 1 & {\([.9, .9]\)} & \\
.9 & 1 & .5 & {\([.8,1]\)} & \\
.9 & 1 & .2 & {\([.5,1]\)} & \\
.9 & 1 & .1 & {\([0,1]\)} & (Modus Darii) \\
1 & \(] 0,1]\) & \(t>0\) & {\([0,1]\)} & \\
\hline \hline
\end{tabular}

\section*{Probabilistic Figure 1, conditional event El}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Premises} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \hline \text { E.I. } \\
& p(S \mid S \vee M)
\end{aligned}
\]} & \multirow[t]{2}{*}{Conclusion
\[
p(P \mid S)
\]} & \\
\hline \(p(P \mid M)\) & \(p(M \mid S)\) & & & \\
\hline \(x\) & \(y\) & p & [\(\left.z^{\prime}, z^{\prime \prime}\right]\) & \\
\hline X & \(y\) & 0 & \([0,1]\) & \\
\hline 1 & 1 & \(t>0\) & \([1,1]\) & (Modus Barbara) \\
\hline 1 & \(y\) & \(t>0\) & [\(y, 1]\) & \\
\hline . 9 & 1 & 1 & [.9, .9] & \\
\hline . 9 & 1 & . 5 & \([.8,1]\) & \\
\hline . 9 & 1 & . 2 & [.5, 1] & \\
\hline . 9 & 1 & . 1 & [0, 1] & \\
\hline 1 &]0, 1] & \(t>0\) &]0,1] & (Modus Darii) \\
\hline
\end{tabular}
\[
\text { If } \begin{aligned}
p(S \mid S \vee M)>0, \text { then } & z^{\prime}=\max \left\{0, x y-\frac{(1-t)(1-x)}{t}\right\} \\
& z^{\prime \prime}=\min \left\{1,(1-x)(1-y)+\frac{x}{t}\right\} .
\end{aligned}
\]
(Theorem 3 of Gilio, Pfeifer, and Sanfilippo (2015). Transitive reasoning with imprecise probabilities.)

Time for a quiz!

\section*{Get into your teams!}

Each team can share a phone, tablet or laptop.
... and go to
kahoot.it

\section*{Syllogistic sentences as defaults (Gilio, Pefeifer, \& Sanfilipo, 2016)}
- Using our coherence interpretation, we also represent (A) by the following default:
\[
S \nmid P \quad \text { (meaning: } p(P \mid S)=1)
\]
- ... its contradictory (O) by the negated default \((\neg(S \nsim P)\), short: \(S \mid \nmid P\)):
\[
S \nLeftarrow P \quad \text { (meaning: } p(P \mid S)<1 \text {) }
\]

\section*{Syllogistic sentences as defaults (Gilio, Pefeifer, \& Sanfilipo, 2016)}
- Using our coherence interpretation, we also represent (A) by the following default:
\[
S \nsim P \quad \text { (meaning: } p(P \mid S)=1)
\]
- ... its contradictory (O) by the negated default \((\neg(S \nsim P)\), short: \(S \nleftarrow P)\) :
\[
S \nLeftarrow P \quad \text { (meaning: } p(P \mid S)<1)
\]

Then, we interpret
- (E) by the default \(S \mu \neg P\) (meaning: \(p(P \mid S)=0\))
- (I) by the negated default \(S \nleftarrow \neg P\) (meaning: \(p(P \mid S)>0\))

\section*{Syllogistic sentences as defaults (Gilio, Pefeifer, \& Sanfilipo, 2016)}
- Using our coherence interpretation, we also represent (A) by the following default:
\[
S \nsim P \quad \text { (meaning: } p(P \mid S)=1)
\]
- ... its contradictory (O) by the negated default \((\neg(S \vdash P)\), short: \(S \nLeftarrow P):\)
\[
S \nLeftarrow P \quad \text { (meaning: } p(P \mid S)<1)
\]

Then, we interpret
- (E) by the default \(S \mu \neg P\) (meaning: \(p(P \mid S)=0\))
- (I) by the negated default \(S \nleftarrow \neg P\) (meaning: \(p(P \mid S)>0\))

Again, we do not presuppose that \(p(S)>0\) !

\section*{Bridges to qualitative reasoning (es., Gilio, Pefere, \& Sonfifipo, 2016)}

The following versions of Weak Transitivity (Freund, Lehmann, \& Morris, 1991) correspond to syllogisms and are theorems in our framework:

Modus Barbara:
\((B \vdash C, A \nsim B, A \vee B \vdash \neg A) \vDash_{p} A \nsim C\).
Modus Darii:
\((B \nsim C, A \nsim \neg B, A \vee B \mid \nsim \neg A) \vDash_{p} A \not \nsim \neg C\).

\section*{Concluding remarks}

\section*{Table of contents}

\section*{Introduction}

Nonmonotonic reasoning
Paradoxes of the material conditional
Probabilistic truth tables
Inferentialist accounts of conditionals
Inferentialism and probabilistic truth tables
Further results from probabilistic truth table tasks
Nested conditionals
Generalised modus ponens
An application to counterfactuals
Aristotle's theses and other connexive principles
Argument strength and Ellsberg's paradox
What is argument strength?
Ellsberg paradox
Experiment
Properties of arguments and relations to Adams' p-validity
Coh. based prob. semantics of categ. Syllogisms
Existential import
Figure 1: coherent probabilistic syllogisms
Syllogistic sentences as defaults
Concluding remarks
References

\section*{Concluding remarks}
- Key assumption: Focus should be on probability propagation (and not on logical validity or p -validity)

\section*{Concluding remarks}
- Key assumption: Focus should be on probability propagation (and not on logical validity or p -validity)
- Argument strength \(\mathfrak{s}\) means that the conclusion probability is (i) high and (ii) precise.

\section*{Concluding remarks}
- Key assumption: Focus should be on probability propagation (and not on logical validity or p -validity)
- Argument strength \(\mathfrak{s}\) means that the conclusion probability is (i) high and (ii) precise.
- Measure \(\mathfrak{s}\) provides a new rational solution of the Ellsberg paradox.

\section*{Concluding remarks}
- Key assumption: Focus should be on probability propagation (and not on logical validity or p -validity)
- Argument strength \(\mathfrak{s}\) means that the conclusion probability is (i) high and (ii) precise.
- Measure \(\mathfrak{s}\) provides a new rational solution of the Ellsberg paradox.
- Beliefs in nested conditionals are previsions of conditional random quantities: Lewis' triviality results are avoided.

\section*{Concluding remarks}
- Key assumption: Focus should be on probability propagation (and not on logical validity or p -validity)
- Argument strength \(\mathfrak{s}\) means that the conclusion probability is (i) high and (ii) precise.
- Measure \(\mathfrak{s}\) provides a new rational solution of the Ellsberg paradox.
- Beliefs in nested conditionals are previsions of conditional random quantities: Lewis' triviality results are avoided.
- Propagation rules for nested modus ponens and nested centering (Gilio, Over, Pfeifer, \& Sanfilippo, 2017) coincide with their non-nested versions.

\section*{Concluding remarks}
- Key assumption: Focus should be on probability propagation (and not on logical validity or p -validity)
- Argument strength \(\mathfrak{s}\) means that the conclusion probability is (i) high and (ii) precise.
- Measure \(\mathfrak{s}\) provides a new rational solution of the Ellsberg paradox.
- Beliefs in nested conditionals are previsions of conditional random quantities: Lewis' triviality results are avoided.
- Propagation rules for nested modus ponens and nested centering (Gilio, Over, Pfeifer, \& Sanfilippo, 2017) coincide with their non-nested versions.
- Simple counterfactuals are explained by nested conditionals.
- importance of zero-antecedent probabilities, e.g., for studying existential import in syllogisms or the paradoxes
- the probabilistic interpretation of the syllogistic sentence types also allow for constructing the probabilistic square (Pfeifer \& Sanfilippo, 2017b) and hexagon of opposition (Pfeifer \& Sanfilippo, 2017a).

\section*{Concluding remarks}
- Key assumption: Focus should be on probability propagation (and not on logical validity or p -validity)
- Argument strength \(\mathfrak{s}\) means that the conclusion probability is (i) high and (ii) precise.
- Measure \(\mathfrak{s}\) provides a new rational solution of the Ellsberg paradox.
- Beliefs in nested conditionals are previsions of conditional random quantities: Lewis' triviality results are avoided.
- Propagation rules for nested modus ponens and nested centering (Gilio, Over, Pfeifer, \& Sanfilippo, 2017) coincide with their non-nested versions.
- Simple counterfactuals are explained by nested conditionals.
- importance of zero-antecedent probabilities, e.g., for studying existential import in syllogisms or the paradoxes
- the probabilistic interpretation of the syllogistic sentence types also allow for constructing the probabilistic square (Pfeifer \& Sanfilippo, 2017b) and hexagon of opposition (Pfeifer \& Sanfilippo, 2017a).
\[
\begin{gathered}
\text { https://homepages.uni-regensburg.de/~pfn23853/ } \\
\text { niki.pfeifer@ur.de }
\end{gathered}
\]

\section*{References I}

Adams, E. W. (1975). The logic of conditionals. An application of probability to deduction. Dordrecht: Reidel.
Baioletti, M., Capotorti, A., Galli, L., Tognoloni, S., Rossi, F., \& Vantaggi, B. (2016). CkC (Check Coherence package; version e6, November 2016). Retrieved from
http://www.dmi.unipg.it/~upkd/paid/software.html (retrieved November 2016)
Carnap, R. (1962). Logical foundations of probability (2nd ed.). Chicago:
University of Chicago Press.
Chater, N., \& Oaksford, M. (1999). The probability heuristics model of syllogistic reasoning. Cognitive Psychology, 38, 191-258.
Christensen, D. (1999). Measuring confirmation. Journal of Philosophy, 96, 437-461.

\section*{References II}

Crupi, V., Tentori, K., \& Gonzales, M. (2007). On Bayesian measures of evidential support: theoretical and empirical issues. Philosophy of Science, 74, 229-252.
Douven, I. (2016). The epistemology of indicative conditionals: Formal and empirical approaches. Cambridge: Cambridge University Press.
Douven, I., Elqayam, S., Singmannc, H., \& van Wijnbergen-Huitink, J. (2018). Conditionals and inferential connections: A hypothetical inferential theory. Cognitive Psychology, 101, 50-81.
Dubois, D., Godo, L., López de Màntaras, R., \& Prade, H. (1993). Qualitative reasoning with imprecise probabilities. Journal of Intelligent Information Systems, 2, 319-363.
Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. The Quarterly Journal of Economics, 75(4), 643-669.
Evans, J. St. B. T., Handley, S. J., \& Over, D. E. (2003). Conditionals and conditional probability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 321-355.

\section*{References III}

Evans, J. St. B. T., Newstead, S. E., \& Byrne, R. M. J. (1993). Human reasoning. The psychology of deduction. Hove: Lawrence Erlbaum.
Finch, H. A. (1960). Confirming power of observations metricized for decisions among hypotheses. Philosophy of Science, 27, 293-207 (part I), 391-404 (part II).
Freund, M., Lehmann, D., \& Morris, P. (1991). Rationality, transitivity, and contraposition. Artificial Intelligence, 52(2), 191-203.
Fugard, A. J. B., Pfeifer, N., \& Mayerhofer, B. (2011). Probabilistic theories of reasoning need pragmatics too: Modulating relevance in uncertain conditionals. Journal of Pragmatics, 43, 2034-2042.
Fugard, A. J. B., Pfeifer, N., Mayerhofer, B., \& Kleiter, G. D. (2011). How people interpret conditionals: Shifts towards the conditional event. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(3), 635-648.

\section*{References IV}

Gibbard, A. (1981). Two recent theories of conditionals. In W. L. Harper, R. Stalnaker, \& G. Pearce (Eds.), Ifs (pp. 221-247). Dordrecht: Reidel.
Gilio, A. (2002). Probabilistic reasoning under coherence in System P.
Annals of Mathematics and Artificial Intelligence, 34, 5-34.
Gilio, A., Over, D. E., Pfeifer, N., \& Sanfilippo, G. (2017). Centering and compound conditionals under coherence. In M. B. Ferraro et al. (Eds.), Soft methods for data science (pp. 253-260). Berlin, Heidelberg: Springer.
Gilio, A., Pfeifer, N., \& Sanfilippo, G. (2015). Transitive reasoning with imprecise probabilities. In S. Destercke \& T. Denoeux (Eds.), Symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU 2015) (pp. 95-105). Dordrecht: Springer LNAI 9161. doi: 10.1007/978-3-319-20807-7_9

\section*{References V}

Gilio, A., Pfeifer, N., \& Sanfilippo, G. (2016). Transitivity in coherence-based probability logic. Journal of Applied Logic, 14, 46-64. doi: http://dx.doi.org/10.1016/j.jal.2015.09.012
Gilio, A., \& Sanfilippo, G. (2013). Conditional random quantities and iterated conditioning in the setting of coherence. In L. C. van der Gaag (Ed.), ECSQARU 2013 (Vol. 7958, pp. 218-229). Berlin, Heidelberg: Springer.
Gilio, A., \& Sanfilippo, G. (2014). Conditional random quantities and compounds of conditionals. Studia Logica, 102(4), 709-729. Hahn, U., \& Oaksford, M. (2006). A normative theory of argument strength. Informal Logic, 26, 1-22.
Jackson, F. (Ed.). (1991). Conditionals. Oxford: Oxford University Press. Kemeny, J., \& Oppenheim, P. (1952). Degrees of factual support.

Philosophy of Science, 19, 307-324.

\section*{References VI}

Kraus, S., Lehmann, D., \& Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167-207.
Lambert, J.-H. (1764). Neues Organon oder Gedanken über die Erforschung und Bezeichung des Wahren und dessen Unterscheidung vom Irrthum und Schein. Leipzig: Wendler.
Lewis, D. (1976). Probabilities of conditionals and conditional probabilities. Philosophical Review, 85, 297-315. (Reprint with postscript in (Jackson, 1991, 76-101); the page references are to the reprint)
Marr, D. (1982). Vision. A computational investigation into the human representation and processing of visual information. San Francisco: W. H. Freeman.

Mortimer, H. (1988). The logic of induction. Paramus, NJ: Prentice Hall. Nozick, R. (1981). Philosophical explanations. Oxford: Clarendon.

\section*{References VII}

Oaksford, M., \& Chater, N. (2009). Précis of "Bayesian rationality: The probabilistic approach to human reasoning". Behavioral and Brain Sciences, 32, 69-120.
Oberauer, K., \& Wilhelm, O. (2003). The meaning(s) of conditionals:
Conditional probabilities, mental models and personal utilities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(4), 680-693.
Over, D. E., Hadjichristidis, C., Evans, J. St. B. T., Handley, S. J., \&
Sloman, S. (2007). The probability of causal conditionals. Cognitive Psychology, 54, 62-97.
Pfeifer, N. (2006a). Contemporary syllogistics: Comparative and quantitative syllogisms. In G. Kreuzbauer \& G. J. W. Dorn (Eds.), Argumentation in Theorie und Praxis: Philosophie und Didaktik des Argumentierens (p. 57-71). Wien: Lit Verlag.

\section*{References VIII}

Pfeifer, N. (2006b). On mental probability logic (Unpublished doctoral dissertation). Department of Psychology, University of Salzburg. (The abstract is published in The Knowledge Engineering Review, 2008, 23, 217-226)
Pfeifer, N. (2007). Rational argumentation under uncertainty. In G. Kreuzbauer, N. Gratzl, \& E. Hiebl (Eds.), Persuasion und Wissenschaft: Aktuelle Fragestellungen von Rhetorik und Argumentationstheorie (p. 181-191). Wien: Lit Verlag.
Pfeifer, N. (2012a). Experiments on Aristotle's Thesis: Towards an experimental philosophy of conditionals. The Monist, 95(2), 223-240.
Pfeifer, N. (2012b). Naturalized formal epistemology of uncertain reasoning (Unpublished doctoral dissertation). Tilburg Center for Logic and Philosophy of Science, Tilburg University.
Pfeifer, N. (2013a). The new psychology of reasoning: A mental probability logical perspective. Thinking \& Reasoning, 19(3-4), 329-345.

\section*{References IX}

Pfeifer, N. (2013b). On argument strength. In F. Zenker (Ed.), Bayesian argumentation. The practical side of probability (pp. 185-193). Dordrecht: Synthese Library (Springer).
Pfeifer, N. (2014). Reasoning about uncertain conditionals. Studia Logica, 102(4), 849-866.
Pfeifer, N., \& Kleiter, G. D. (2003). Nonmonotonicity and human probabilistic reasoning. In Proceedings of the \(6^{\text {th }}\) workshop on uncertainty processing (p. 221-234). Hejnice: September 24-27, 2003.

Pfeifer, N., \& Kleiter, G. D. (2005). Towards a mental probability logic. Psychologica Belgica, 45(1), 71-99.
Pfeifer, N., \& Kleiter, G. D. (2006a). Inference in conditional probability logic. Kybernetika, 42, 391-404.

\section*{References \(X\)}

Pfeifer, N., \& Kleiter, G. D. (2006b). Is human reasoning about nonmonotonic conditionals probabilistically coherent? In Proceedings of the \(7^{\text {th }}\) workshop on uncertainty processing (p. 138-150). Mikulov: September 16-20, 2006.
Pfeifer, N., \& Kleiter, G. D. (2007). Human reasoning with imprecise probabilities: Modus ponens and Denying the antecedent. In G. De Cooman, J. Vejnarová, \& M. Zaffalon (Eds.), Proceedings of the \(5^{\text {th }}\) International Symposium on Imprecise Probability: Theories and Applications (p. 347-356). Prague: SIPTA.
Pfeifer, N., \& Kleiter, G. D. (2009). Framing human inference by coherence based probability logic. Journal of Applied Logic, 7(2), 206-217.
Pfeifer, N., \& Kleiter, G. D. (2010). The conditional in mental probability logic. In M. Oaksford \& N. Chater (Eds.), Cognition and conditionals: Probability and logic in human thought (pp. 153-173). Oxford: Oxford University Press.

\section*{References XI}

Pfeifer, N., \& Kleiter, G. D. (2011). Uncertain deductive reasoning. In K. Manktelow, D. E. Over, \& S. Elqayam (Eds.), The science of reason: A Festschrift for Jonathan St. B.T. Evans (p. 145-166). Hove: Psychology Press.
Pfeifer, N., \& Pankka, H. (2017). Modeling the Ellsberg paradox by argument strength. In G. Gunzelmann, A. Howes, T. Tenbrink, \& E. Davelaar (Eds.), Proceedings of the 39 \({ }^{\text {th }}\) Cognitive Science Society Meeting (pp. 2888-2893). Austin, TX: The Cognitive Science Society.
Pfeifer, N., \& Sanfilippo, G. (2017a). Probabilistic squares and hexagons of opposition under coherence. International Journal of Approximate Reasoning, 88, 282-294.
Pfeifer, N., \& Sanfilippo, G. (2017b). Square of opposition under coherence. In M. B. Ferraro et al. (Eds.), Soft methods for data science (pp. 407-414). Berlin, Heidelberg: Springer.

\section*{References XII}

Pfeifer, N., \& Stöckle-Schobel, R. (2015). Uncertain conditionals and counterfactuals in (non-)causal settings. In G. Arienti, B. G. Bara, \& S. G. (Eds.), Proceedings of the EuroAsianPacific Joint Conference on Cognitive Science (\(4^{\text {th }}\) European Conference on Cognitive Science; \(10^{\text {th }}\) International Conference on Cognitive Science) (Vol. 1419, pp. 651-656). Aachen: CEUR Workshop Proceedings. Retrieved from http://ceur-ws.org/Vol-1419/paper0108.pdf
Pfeifer, N., \& Tulkki, L. (2017). Abductive, causal, and counterfactual conditionals under incomplete probabilistic knowledge. In G. Gunzelmann, A. Howes, T. Tenbrink, \& E. Davelaar (Eds.), Proceedings of the \(39^{\text {th }}\) Cognitive Science Society Meeting (pp. 2888-2893). Austin, TX: The Cognitive Science Society.
Rips, L. J. (2001). Two kinds of reasoning. Psychological Science, 12(2), 129-134.

\section*{References XIII}

Sanfilippo, G., Pfeifer, N., \& Gilio, A. (2017). Generalized probabilistic modus ponens. In A. Antonucci, C. L., \& O. Papini (Eds.), Lecture notes LNAI (Vol. 10369, pp. 480-490). Dordrecht: Springer. Skovgaard-Olsen, N., Singmann, H., \& Klauer, K. C. (2016). The relevance effect and conditionals. Cognition, 150, 26-36.```

