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Mental probability logic (Pfeifer, 2006b, 2012a, 2012b, 2013a, 2014; Pfeifer & Kleiter, 2005)

▸ Uncertain indicative If A, then C is interpreted as p(C ∣A)

▸ The conditional event C ∣A is partially truth-functional (void, if A is
false and undefined, if A is a logical contradiction)

▸ Arguments: ⟨ premise(s) , conclusion ⟩

▸ Premises contain:
▸ probabilistic and/or logical information
▸ background knowledge (if available)

▸ Key idea: Uncertainty is propagated deductively from the

premises to the conclusion

▸ Rationality framework: coherence based probability logic
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Coherence based probability logic
▸ Coherence

▸ de Finetti, and {Coletti, Gilio, Lad, Regazzini, Sanfilippo, Scozzafava,
Vantaggi, Walley, . . . }

▸ degrees of belief
▸ complete algebra is not required
▸ many probabilistic approaches define p(B ∣A) by

p(A ∧ B)

p(A)
and assume that p(A) > 0

what if p(A) = 0?
in the coherence approach, conditional probability, p(B ∣A), is primitive

▸ zero probabilities are exploited to reduce the complexity
▸ imprecision

▸ Probability logic
▸ uncertain argument forms
▸ deductive consequence relation
▸ propagation of the uncertainties from the premises to the

conclusions
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Example: Probabilistic modus ponens

(Modus Ponens) (Probabilistic modus ponens)
If A, then C p(C ∣A) = .90
A p(A) = .50
C .45 ≤ p(C) ≤ .95

xy ≤ p(C) ≤ xy + 1 − x

0 1
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Example: Probabilistic modus ponens

(Modus Ponens) (Probabilistic modus ponens)
If A, then C p(C ∣A) = 1
A p(A) = 1
C p(C) = 1

xy ≤ p(C) ≤ xy + 1 − x
X

0 1
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Example: Probabilistic modus ponens

(Modus Ponens) (Probabilistic modus ponens)
If A, then C p(C ∣A) = 0
A p(A) = 0
C 0 ≤ p(C) ≤ 1

xy ≤ p(C) ≤ xy + 1 − x

0 1
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°
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°
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Check Coherence software package

. . . this software is maintained by Andrea Capotorti and is available here
(Baioletti et al., 2016):

http://www.dmi.unipg.it/~upkd/paid/software.html

http://www.dmi.unipg.it/~upkd/paid/software.html
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Nonmonotonic reasoning

System P: Rationality postulates for nonmonotonic
reasoning (Kraus, Lehmann, & Magidor, 1990)

Reflexivity (axiom): α∣∼α

Left logical equivalence:
from ⊧ α ≡ β and α∣∼γ infer β∣∼γ

Right weakening:
from ⊧ α ⊃ β and γ∣∼α infer γ∣∼β

Or: from α∣∼γ and β∣∼γ infer α ∨ β∣∼γ

Cut: from α ∧ β∣∼γ and α∣∼β infer α∣∼γ

Cautious monotonicity:
from α∣∼β and α∣∼γ infer α ∧ β∣∼γ

And (derived rule): from α∣∼β and α∣∼γ infer α∣∼β ∧ γ

α ∣∼ β If α, normally
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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β
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System P: Rationality postulates for nonmonotonic
reasoning (Kraus et al., 1990)

Reflexivity (axiom): α∣∼α

Left logical equivalence:
from ⊧ α ≡ β and α∣∼γ infer β∣∼γ

Right weakening:
from ⊧ α ⊃ β and γ∣∼α infer γ∣∼β

Or: from α∣∼γ and β∣∼γ infer α ∨ β∣∼γ

Cut: from α ∧ β∣∼γ and α∣∼β infer α∣∼γ

Cautious monotonicity:
from α∣∼β and α∣∼γ infer α ∧ β∣∼γ

And (derived rule): from α∣∼β and α∣∼γ infer α∣∼β ∧ γ

α ∣∼ β is read as If α, normally
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

?

β



Nonmonotonic reasoning

Probabilistic version of System P (Gilio (2002); Table 2 Pfeifer and Kleiter (2009))

Name Probability logical version

Left logical equivalence ⊧(E1 ≡ E2),P(E3∣E1) = x ∴ P(E3∣E2) = x

Right weakening P(E1∣E3) = x ,⊧(E1 ⊃ E2) ∴ P(E2∣E3) ∈ [x ,1]
Cut P(E2∣E1 ∧ E3) = x ,P(E1∣E3) = y

∴ P(E2∣E3) ∈ [xy ,1 − y + xy]
And P(E2∣E1) = x ,P(E3∣E1) = y

∴ P(E2 ∧ E3∣E1) ∈ [max{0, x + y − 1},min{x , y}]
Cautious monotonicity P(E2∣E1) = x ,P(E3∣E1) = y

∴ P(E3∣E1 ∧ E2) ∈ [max{0, (x+y−1)/x},min{y/x ,1}]
Or P(E3∣E1)=x ,P(E3∣E2)=y

∴ P(E3∣E1∨E2)∈[xy/(x+y−xy), (x+y−2xy)/(1−xy)]
Transitivity P(E2∣E1) = x ,P(E3∣E2) = y ∴ P(E3∣E1)∈ [0,1]
Contraposition P(E2∣E1) = x ∴ P(¬E1∣¬E2)∈ [0,1]
Monotonicity P(E3∣E1) = x ∴ P(E3∣E1 ∧ E2)∈ [0,1]
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Probabilistic version of System P (Gilio (2002); Table 2 Pfeifer and Kleiter (2009))

Name Probability logical version

Left logical equivalence ⊧(E1 ≡ E2),P(E3∣E1) = x ∴ P(E3∣E2) = x

Right weakening P(E1∣E3) = x ,⊧(E1 ⊃ E2) ∴ P(E2∣E3) ∈ [x ,1]
Cut P(E2∣E1 ∧ E3) = x ,P(E1∣E3) = y

∴ P(E2∣E3) ∈ [xy ,1 − y + xy]
And P(E2∣E1) = x ,P(E3∣E1) = y

∴ P(E2 ∧ E3∣E1) ∈ [max{0, x + y − 1},min{x , y}]
Cautious monotonicity P(E2∣E1) = x ,P(E3∣E1) = y

∴ P(E3∣E1 ∧ E2) ∈ [max{0, (x+y−1)/x},min{y/x ,1}]
Or P(E3∣E1)=x ,P(E3∣E2)=y

∴ P(E3∣E1∨E2)∈[xy/(x+y−xy), (x+y−2xy)/(1−xy)]
Transitivity P(E2∣E1) = x ,P(E3∣E2) = y ∴ P(E3∣E1)∈ [0,1]
Contraposition P(E2∣E1) = x ∴ P(¬E1∣¬E2)∈ [0,1]
Monotonicity P(E3∣E1) = x ∴ P(E3∣E1 ∧ E2)∈ [0,1]

. . . where ∴ is deductive

. . . probabilistically non-informative
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The Tweety problem (Pfeifer, 2012b)

P1 P [Fly(x)∣Bird(x)] = .95. (Birds can normally fly.)
P2

Bird(Tweety).
(Tweety is a bird.)

C1 P [Fly(Tweety)] = .95. (Tweety can normally fly.)

P3
Penguin(Tweety).

(Tweety is a penguin.)

P4 P [Fly(x)∣Penguin(x)] = .01. (Penguins normally can’t fly.)
P5 P [Bird(x)∣Penguin(x)] = .99. (Penguins are normally birds.)
C2 P [Fly(Tweety) ∣ Bird(Tweety) ∧ Penguin(Tweety)] ∈ [0, .01].

(If Tweety is a bird and a penguin, normally Tweety can’t fly.)
The probabilistic modus ponens justifies C1 and cautious monotonicity
justifies C2.
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Nonmonotonic reasoning

Example 1: (Cautious) monotonicity

▸ In logic

from A ⊃ B infer (A ∧C) ⊃ B

▸ In probability logic

from P(B ∣A) = x infer 0 ≤ P(B ∣A ∧C) ≤ 1

But: from P(A ⊃ B) = x infer x ≤P((A ∧ C) ⊃ B) ≤ 1

▸ Cautious monotonicity (Gilio, 2002)

from P(B ∣A) = x and P(C ∣A) = y

infer max(0, (x + y − 1)/x) ≤ P(C ∣A ∧B) ≤ min(y/x ,1)
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Nonmonotonic reasoning

Example task: Cautious monotonicity (Pfeifer & Kleiter, 2003)

About the guests at a prom we know the following:

exactly 72% wear a black suit.
exactly 63% wear glasses.

Imagine all the persons of this prom who wear glasses.

How many of the persons wear a black suit,
given they are at this prom and wear glasses?



Nonmonotonic reasoning

Results – Monotonicity (Example Task 1; Pfeifer and Kleiter (2003))
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Results – Cautious monotonicity (Example Task 1; Pfeifer and Kleiter (2003))
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Nonmonotonic reasoning

Example 2: Contraposition

▸ In logic
from A ⊃ B infer ¬B ⊃ ¬A

from ¬B ⊃ ¬A infer A ⊃ B

▸ In probability logic

from P(B ∣A) = x infer 0 ≤ P(¬A∣¬B) ≤ 1

from P(¬A∣¬B) = x infer 0 ≤ P(B ∣A) ≤ 1

▸ But

P(A ⊃ B)=P(¬B ⊃ ¬A)
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Results Contraposition (n1 = 40, n2 = 40; Pfeifer and Kleiter (2006b))
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Consider if A, then B.
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Consider if A, then B.
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P1 If A, then B
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C not-A
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C If not-B , then not-A
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Modus tollens vs. Contraposition (Pfeifer, 2014, Studia Logica)

Consider if A, then B.
Will not-A, if not-B?

P1 If A, then B

P2 not-B

C not-A

P1 If A, then B

C If not-B , then not-A

P(B ∣A) = x , P(¬B) = y

⊧ 0 ≤ θ ≤ P(¬A) ≤ 1

P(B ∣A) = x

⊧ 0 ≤ P(¬A∣¬B) ≤ 1

the probabilistic modus tollens

is probabilistically informative
i.e., x and y constrain P(¬A)

the probabilistic contraposition

is probabilistically non-informative

i.e., the tightest coherent probability

bounds are 0 and 1
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Modus tollens vs. Contraposition (Pfeifer, 2014, Studia Logica)

Consider if A, then B.
Will not-A, if not-B?

P1 If A, then B

P2 not-B

C not-A

P1 If A, then B

C If not-B , then not-A

P(B ∣A) = x

⊧ 0 ≤ P(¬A∣¬B) ≤ 1

P(B ∣A) = x , P(¬B) = y

⊧ 0 ≤ θ ≤ P(¬A) ≤ 1

the probabilistic modus tollens

is probabilistically informative
i.e., x and y constrain P(¬A)

if x + y ≤ 1, θ = 1−x−y
1−x

if x + y > 1, θ = x+y−1
x

the probabilistic contraposition

is probabilistically non-informative

i.e., the tightest coherent probability

bounds are 0 and 1
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Nonmonotonic reasoning

Example 3: (Cumulative) transitivity

▸ Transitivity in logic
from A ⊃ B and B ⊃ C infer A ⊃ C

▸ Transitivity in probability logic

from P(B ∣A) = x and P(C ∣B) = y infer P(C ∣A) ∈ [0,1]
▸ CUT (CUmulative Transitivity)

from P(B ∣A) = x and P(C ∣A∧B) = y

infer P(C ∣A) ∈ [xy ,1 − x + xy]
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Modus ponens as a special case of CUT

CUT (Gilio, 2002): p(B ∣A) = x

p(C ∣A ∧B) = y

Modus ponens: xy ≤ p(C ∣A) ≤ xy + 1 − x
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p(C ∣A ∧B) = y

Modus ponens: xy ≤ p(C ∣A) ≤ xy + 1 − x
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xy ≤ p(C ∣⊺) ≤ xy + 1 − x
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Modus ponens as a special case of CUT

CUT (Gilio, 2002): p(B ∣A) = x

p(C ∣A ∧B) = y

Modus ponens: xy ≤ p(C ∣A) ≤ xy + 1 − x

Let A ≡ ⊺. Since p(E) =def p(E ∣⊺) and p(E ∧ ⊺) = p(E), we obtain:

Modus ponens: p(B ∣⊺) = x

CUT (Gilio, 2002): p(C ∣⊺∧B) = y

xy ≤ p(C ∣⊺) ≤ xy + 1 − x



Nonmonotonic reasoning

Time for a quiz!

. . . and go to

kahoot.it

kahoot.it
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Problematic conditional introduction inferences (Pfeifer, 2014)

Paradoxes of the material conditional, e.g.,

(Paradox 1) (Paradox 2)
P(B) = x P(¬A) = x

0 ≤ P(B ∣A) ≤ 1 0 ≤ P(B ∣A) ≤ 1

probabilistically non-informative

This matches the data (Pfeifer & Kleiter, 2011).

Paradox 1: Special case covered in the coherence approach, but not
covered in the standard approach to probability:

If P(B) = 1, then P(A ∧B) = P(A). Thus, P(B ∣A) = P(A∧B)
P(A) =

P(A)
P(A)= 1, if

P(A) > 0.
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Paradoxes of the material conditional

Inf. versions of the paradoxes (Pfeifer, 2014)

From Pr(B) = 1 and A ∧ B ≡ � infer Pr(B ∣A) = 0 is coherent.

From Pr(B) = 1 and A ⊃ B ≡ ⊺ infer Pr(B ∣A) = 1 is coherent.

From Pr(B) = x and Pr(A) = y infer

max{0, x + y − 1

y
} ⩽ Pr(B ∣A) ⩽ min{x

y
,1} is coherent.

. . . a special case of the cautious monotonicity rule of System P (Gilio, 2002).
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Probabilistic truth table task (Evans, Handley, & Over, 2003; Oberauer & Wilhelm, 2003)

P(A ∧ C) = x1

P(A ∧ ¬C) = x2

P(¬A ∧ C) = x3

P(¬A ∧ ¬C) = x4

P(If A, then C) = ?
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Probabilistic truth table task (Evans et al., 2003; Oberauer & Wilhelm, 2003)

P(A ∧ C) = x1 = .25
P(A ∧ ¬C) = x2 = .25
P(¬A ∧ C) = x3 = .25

P(¬A ∧ ¬C) = x4 = .25

P(If A, then C) = ?

Conclusion candidates:
▸ P(A ∧C) = x1 = .25
▸ P(C ∣A) = x1/(x1 + x2) = .50
▸ P(A ⊃ C) = x1 + x3 + x4 = .75



Probabilistic truth tables

Probabilistic truth table task (Evans et al., 2003; Oberauer & Wilhelm, 2003)

P(A ∧ C) = x1

P(A ∧ ¬C) = x2

P(¬A ∧ C) = x3

P(¬A ∧ ¬C) = x4

P(If A, then C) = ?

Main results:

▸ More than half of the responses are consistent with P(C ∣A)
▸ Many responses are consistent with P(A ∧C)



Probabilistic truth tables

Probabilistic truth table task (Evans et al., 2003; Oberauer & Wilhelm, 2003)

P(A ∧ C) = x1

P(A ∧ ¬C) = x2

P(¬A ∧ C) = x3

P(¬A ∧ ¬C) = x4

P(If A, then C) = ?

Main results:

▸ More than half of the responses are consistent with P(C ∣A)
▸ Many responses are consistent with P(A ∧C)
▸ Generalized version: Interpretation shifts to P(C ∣A)

(Fugard, Pfeifer, Mayerhofer, & Kleiter, 2011, Journal of Experimental Psychology: LMC)



Probabilistic truth tables

Probabilistic truth table task (Evans et al., 2003; Oberauer & Wilhelm, 2003)

P(A ∧ C) = x1

P(A ∧ ¬C) = x2

P(¬A ∧ C) = x3

P(¬A ∧ ¬C) = x4

P(If A, then C) = ?

Main results:

▸ More than half of the responses are consistent with P(C ∣A)
▸ Many responses are consistent with P(A ∧C)
▸ Generalized version: Interpretation shifts to P(C ∣A)

(Fugard, Pfeifer, Mayerhofer, & Kleiter, 2011, Journal of Experimental Psychology: LMC)

Key feature:

▸ Reasoning under complete probabilistic knowledge



Probabilistic truth tables

Experiment

Motivation

▸ probabilistic truth table task with incomplete probabilistic knowledge

▸ Is the conditional event interpretation still dominant?

▸ Are there shifts of interpretation?



Probabilistic truth tables

Example: Task 5 (Pfeifer, 2013a, Thinking & Reasoning)

Illustrated here are all sides of a six-sided die. The sides have two
properties: a color (black or white) and a shape (circle, triangle, or square).
Question marks indicate covered sides.

? ?
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Imagine that this die is placed in a cup. Then the cup is randomly shaken.
Finally, the cup is placed on the table so that you cannot see what side of
the die shows up.
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Illustrated here are all sides of a six-sided die. The sides have two
properties: a color (black or white) and a shape (circle, triangle, or square).
Question marks indicate covered sides.

? ?
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Example: Task 5 (Pfeifer, 2013a, Thinking & Reasoning)

Illustrated here are all sides of a six-sided die. The sides have two
properties: a color (black or white) and a shape (circle, triangle, or square).
Question marks indicate covered sides.

? ?

Imagine that this die is placed in a cup. Then the cup is randomly shaken.
Finally, the cup is placed on the table so that you cannot see what side of
the die shows up.
Question: How sure can you be that the following sentence holds?

If the side facing up shows white, then the side shows a square.

Answer: Conjunction: at least 1 out of 6 and at most 3 out of 6
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1 2 3 4 5 6
out of
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1 2 3 4 5 6

(please tick the appropriate boxes)
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Example: Task 5 (Pfeifer, 2013a, Thinking & Reasoning)

Illustrated here are all sides of a six-sided die. The sides have two
properties: a color (black or white) and a shape (circle, triangle, or square).
Question marks indicate covered sides.

? ?

Imagine that this die is placed in a cup. Then the cup is randomly shaken.
Finally, the cup is placed on the table so that you cannot see what side of
the die shows up.
Question: How sure can you be that the following sentence holds?

If the side facing up shows white, then the side shows a square.

Answer: Mat. cond.: at least 2 out of 6 and at most 4 out of 6

at least at most

out of
0 1 2 3 4 5 6

1 2 3 4 5 6
out of

0 1 2 3 4 5 6

1 2 3 4 5 6

(please tick the appropriate boxes)
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Set-up

▸ 20 tasks, three “warming-up tasks”

▸ all tasks differentiate between material conditional, conjunction, and
conditional event interpretation
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Experiment (Pfeifer, 2013a, Thinking & Reasoning)

Set-up
▸ 20 tasks, three “warming-up tasks”
▸ all tasks differentiate between material conditional, conjunction, and

conditional event interpretation

Sample
▸ 20 Cambridge University students
▸ 10 female, 10 male
▸ between 18 and 27 years old (mean: 21.65)
▸ no students of mathematics, philosophy, computer science, or

psychology
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Experiment (Pfeifer, 2013a, Thinking & Reasoning)

Set-up

▸ 20 tasks, three “warming-up tasks”

▸ all tasks differentiate between material conditional, conjunction, and
conditional event interpretation

Results

▸ Overall (340 interval responses)
▸ 65.6% consistent with conditional event
▸ 5.6% consistent with conjunction
▸ 0.3% consistent with material conditional
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Experiment (Pfeifer, 2013a, Thinking & Reasoning)

Set-up

▸ 20 tasks, three “warming-up tasks”

▸ all tasks differentiate between material conditional, conjunction, and
conditional event interpretation

Results

▸ Overall (340 interval responses)
▸ 65.6% consistent with conditional event
▸ 5.6% consistent with conjunction
▸ 0.3% consistent with material conditional

▸ Shift of interpretation
▸ First three tasks: 38.3% consistent with conditional event
▸ Last three tasks: 83.3% consistent with conditional event
▸ Strong correlation between conditional event frequency and item

position (r(15) = 0.71, p < 0.005)
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Increase of cond. event resp. (n1 = 20) (Pfeifer, 2013a, Thinking & Reasoning)

5 10 15

6
8

1
0

1
2

1
4

1
6

1
8

Target task number (1−17)

F
re

q
u

e
n

c
y
 o

f 
c
o

n
d

it
io

n
a

l 
e
ve

n
t 

re
s
p

o
n

s
e

s
 (

n
=

2
0

)



Probabilistic truth tables

Beyond “abstract” indicative conditionals

Experimental design (Pfeifer & Tulkki, 2017):

indicative counterfactual

non-causal n1 = 20 n2 = 20
causal n3 = 20 n4 = 20
abductive n5 = 20 n6 = 20



Probabilistic truth tables

Sample task: non-causal, indicative (Pfeifer & Tulkki, 2017)



Probabilistic truth tables

Sample task: causal, counterfactual (Pfeifer & Tulkki, 2017)

counterfactual
= subjunctive mood + factual statement (“who takes Xebutol")



Probabilistic truth tables Inferentialist accounts of conditionals

Inferentialism and ∆p

Inferentialist accounts of conditionals claim that there must be some
inferential connection between the antecedent and the consequent of a
conditional in order to assert it (see, e.g., Douven, 2016;

Douven, Elqayam, Singmannc, & van Wijnbergen-Huitink, 2018; Skovgaard-Olsen, Singmann, & Klauer, 2016).
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The strength of the inferential connection (or “relevance”) can be measured
by ∆p:

∆p(If A, then C) =def . p(C ∣A) − p(C ∣¬A)
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Inferentialist accounts of conditionals claim that there must be some
inferential connection between the antecedent and the consequent of a
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The strength of the inferential connection (or “relevance”) can be measured
by ∆p:
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▸ positive relevance/strong inferential connection when ∆p > 0

▸ irrelevance/no inferential connection when ∆p = 0

▸ negative relevance/no inferential connection when ∆p < 0
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Inferentialism and ∆p

Inferentialist accounts of conditionals claim that there must be some
inferential connection between the antecedent and the consequent of a
conditional in order to assert it (see, e.g., Douven, 2016; Douven et al., 2018;

Skovgaard-Olsen et al., 2016).
The strength of the inferential connection (or “relevance”) can be measured
by ∆p:

∆p(If A, then C) =def . p(C ∣A) − p(C ∣¬A)
▸ positive relevance/strong inferential connection when ∆p > 0

▸ irrelevance/no inferential connection when ∆p = 0

▸ negative relevance/no inferential connection when ∆p < 0



Probabilistic truth tables Inferentialism and probabilistic truth tables

Sample where ∆p is violated (Pfeifer & Tulkki, 2017, in prep.)

p(white∣square)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3/5

−p(white∣¬square)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1/1

= −2/5< 0



Probabilistic truth tables Inferentialism and probabilistic truth tables

What is ∆p in the context of incomplete probabilistic
information?

?

If the figure on the upward facing side of the die is a circle, then the figure is black.



Probabilistic truth tables Inferentialism and probabilistic truth tables

What is ∆p in the context of incomplete probabilistic
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Probabilistic truth tables Inferentialism and probabilistic truth tables

What is ∆p in the context of incomplete probabilistic
information?

?

If the figure on the upward facing side of the die is a circle, then the figure is black.

1/2 ≤ p(black∣circle) ≤ 2/2

2/5 ≤ p(black∣¬circle) ≤ 3/5
The symbol of the covered card may be any one of four possibilities!



Probabilistic truth tables Inferentialism and probabilistic truth tables

What is ∆p in the context of incomplete probabilistic
information?

Possibility #1:

?

If the figure on the upward facing side of the die is a circle, then the figure is black.

∆ppossibility #1 = p(black∣circle)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1/1

−p(black∣¬circle)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2/5

= 3/5> 0
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What is ∆p in the context of incomplete probabilistic
information?

Possibility #2:

?

If the figure on the upward facing side of the die is a circle, then the figure is black.

∆ppossibility #2 = p(black∣circle)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1/1

−p(black∣¬circle)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3/5

= 2/5> 0
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What is ∆p in the context of incomplete probabilistic
information?

Possibility #3:

?

If the figure on the upward facing side of the die is a circle, then the figure is black.

∆ppossibility #3 = p(black∣circle)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2/2

−p(black∣¬circle)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2/4

= 1/2> 0



Probabilistic truth tables Inferentialism and probabilistic truth tables

What is ∆p in the context of incomplete probabilistic
information?

Possibility #4:

?

If the figure on the upward facing side of the die is a circle, then the figure is black.

∆ppossibility #4 = p(black∣circle)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1/2

−p(black∣¬circle)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2/4

= 0
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Probabilistic truth tables Inferentialism and probabilistic truth tables

Sample ∆p-values

task # ?-info possible ∆p values

T3 1 0.0, 0.4, 0.5, 0.6
T4 3 -1.8, -1.5, -1.3, -1.2, -1.0, -0.8, -0.8, -0.8, -0.8, -0.8,

-0.7, -0.7, -0.7, -0.6, -0.6, -0.5, -0.5, -0.5, -0.4, -0.4,
-0.4, -0.4, -0.4, -0.4, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3,
-0.3, -0.3, -0.3, -0.3, -0.3, -0.2, -0.2, -0.2, -0.2, -0.2,
-0.2, -0.2, -0.2, -0.2, -0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.3, 0.3,
0.5



Probabilistic truth tables Inferentialism and probabilistic truth tables

T1 T2 T3 T4 T5 T6

# ?-info 0 0 1 3 1 1
# ∆p-values 1 1 4 64 4 4
Mean -0.40 0.50 0.38 -0.32 0.44 0.27
SD – – 0.26 0.42 0.18 0.21
Min – – 0.00 -1.75 0.25 0.00
Max – – 0.60 0.50 0.67 0.50
% ∆p > 0 0 100 75 14 100 75
% ∆p = 0 0 0 25 14 0 25
% ∆p < 0 100 0 0 72 0 0

T7 T8 T9

# ?-info 3 2 3
# ∆p-values 64 16 64
Mean -0.11 0.22 -0.01
SD 0.40 0.22 0.46
Min -1.17 -0.17 -1.50
Max 0.83 0.60 0.83
% ∆p > 0 33 81 47
% ∆p = 0 12 0 17
% ∆p < 0 55 19 36



Probabilistic truth tables Inferentialism and probabilistic truth tables

Results: responses in percentages (N = 120) (Pfeifer & Tulkki, 2017)

Interpretation T1 T2 T3 T4 T5 T6

[p(⋅∣⋅)] [48] [52] [15] [16] [23] [24]
[p(⋅∣⋅)

l
] [- -] [- -] [8] [13] [17] [12]

[p(⋅∣⋅)u] [- -] [- -] [19] [8] [11] [10]
[p(⋅∣⋅)

lu
] [- -] [- -] [1] [3] [2] [1]

Grouped p(⋅∣⋅) 48 52 43 40 53 47
p(⋅ ∧ ⋅) 23 27 34 41 36 32
p(⋅ ⊃ ⋅) 2 0 0 0 0 1
p(⋅ ≡ ⋅) [- -] [- -] 1 [- -] [- -] 0
p(⋅∣∣⋅) [- -] [- -] 2 [- -] [- -] 0
Other 27 22 21 19 12 21



Probabilistic truth tables Inferentialism and probabilistic truth tables

Results: responses in percentages (N = 120) (Pfeifer & Tulkki, 2017)

Interpretation T1 T2 T3 T4 T5 T6

[p(⋅∣⋅)] [48] [52] [15] [16] [23] [24]
[p(⋅∣⋅)

l
] [- -] [- -] [8] [13] [17] [12]

[p(⋅∣⋅)u] [- -] [- -] [19] [8] [11] [10]
[p(⋅∣⋅)

lu
] [- -] [- -] [1] [3] [2] [1]

Grouped p(⋅∣⋅) 48 52 43 40 53 47
p(⋅ ∧ ⋅) 23 27 34 41 36 32
p(⋅ ⊃ ⋅) 2 0 0 0 0 1
p(⋅ ≡ ⋅) [- -] [- -] 1 [- -] [- -] 0
p(⋅∣∣⋅) [- -] [- -] 2 [- -] [- -] 0
Other 27 22 21 19 12 21

% ∆p > 0 0 100 75 14 100 75



Probabilistic truth tables Inferentialism and probabilistic truth tables

Results: responses in percentages (N = 120) (Pfeifer & Tulkki, 2017)

Interpretation T7 T8 T9 T10 T11 T12

[p(⋅∣⋅)] [23] [27] [25] [55] [56] [29]
[p(⋅∣⋅)

l
] [10] [13] [9] [- -] [- -] [10]

[p(⋅∣⋅)u] [15] [7] [9] [- -] [- -] [18]
[p(⋅∣⋅)

lu
] [0] [0] [0] [- -] [- -] [0]

Grouped p(⋅∣⋅) 48 46 43 55 56 58
p(⋅ ∧ ⋅) 33 31 33 28 28 30
p(⋅ ⊃ ⋅) 0 0 0 1 0 0
p(⋅ ≡ ⋅) [- -] [- -] [- -] [- -] [- -] 0
p(⋅∣∣⋅) [- -] [- -] [- -] [- -] [- -] 1
Other 18 23 23 17 17 12



Probabilistic truth tables Inferentialism and probabilistic truth tables

Results: responses in percentages (N = 120) (Pfeifer & Tulkki, 2017)

Interpretation T7 T8 T9 T10 T11 T12

[p(⋅∣⋅)] [23] [27] [25] [55] [56] [29]
[p(⋅∣⋅)

l
] [10] [13] [9] [- -] [- -] [10]

[p(⋅∣⋅)u] [15] [7] [9] [- -] [- -] [18]
[p(⋅∣⋅)

lu
] [0] [0] [0] [- -] [- -] [0]

Grouped p(⋅∣⋅) 48 46 43 55 56 58
p(⋅ ∧ ⋅) 33 31 33 28 28 30
p(⋅ ⊃ ⋅) 0 0 0 1 0 0
p(⋅ ≡ ⋅) [- -] [- -] [- -] [- -] [- -] 0
p(⋅∣∣⋅) [- -] [- -] [- -] [- -] [- -] 1
Other 18 23 23 17 17 12

% ∆p > 0 33 81 47 0 100 75



Probabilistic truth tables Inferentialism and probabilistic truth tables

Results: responses in percentages (N = 120) (Pfeifer & Tulkki, 2017)

Interpretation T13 T14 T15 T16 T17 T18

[p(⋅∣⋅)] [35] [35] [30] [28] [32] [31]
[p(⋅∣⋅)

l
] [9] [13] [14] [13] [17] [14]

[p(⋅∣⋅)u] [9] [8] [11] [13] [7] [10]
[p(⋅∣⋅)

lu
] [0] [0] [1] [2] [0] [0]

Grouped p(⋅∣⋅) 53 56 56 54 55 55
p(⋅ ∧ ⋅) 29 30 28 32 26 29
p(⋅ ⊃ ⋅) 0 0 0 0 0 0
p(⋅ ≡ ⋅) [- -] [- -] 0 [- -] [- -] [- -]
p(⋅∣∣⋅) [- -] [- -] 3 [- -] [- -] [- -]
Other 18 14 13 14 19 16



Probabilistic truth tables Inferentialism and probabilistic truth tables

Results: responses in percentages (N = 120) (Pfeifer & Tulkki, 2017)

Interpretation T13 T14 T15 T16 T17 T18

[p(⋅∣⋅)] [35] [35] [30] [28] [32] [31]
[p(⋅∣⋅)

l
] [9] [13] [14] [13] [17] [14]

[p(⋅∣⋅)u] [9] [8] [11] [13] [7] [10]
[p(⋅∣⋅)

lu
] [0] [0] [1] [2] [0] [0]

Grouped p(⋅∣⋅) 53 56 56 54 55 55
p(⋅ ∧ ⋅) 29 30 28 32 26 29
p(⋅ ⊃ ⋅) 0 0 0 0 0 0
p(⋅ ≡ ⋅) [- -] [- -] 0 [- -] [- -] [- -]
p(⋅∣∣⋅) [- -] [- -] 3 [- -] [- -] [- -]
Other 18 14 13 14 19 16

% ∆p > 0 14 100 75 33 81 47



Probabilistic truth tables Further results from probabilistic truth table tasks

Percentages of response types in Pfeifer and Stöckle-Schobel (2015) (N = 80)
Interpretation T1 T2 T3 T4 T5 T6

p(⋅ ⊃ ⋅) 0 1 1 0 0 3
p(⋅ ∧ ⋅) 5 13 13 10 9 6
p(⋅∣⋅) 63 74 84 78 81 80
Other 28 12 2 12 10 11

T7 T8 T9 T10 T11 T12

p(⋅ ⊃ ⋅) 1 1 0 0 1 1
p(⋅ ∧ ⋅) 10 8 8 6 8 8
p(⋅∣⋅) 83 79 86 86 89 85
Other 6 12 6 8 2 6

T13 T14 T15 T16 T17 T18

p(⋅ ⊃ ⋅) 0 1 1 1 0 0
p(⋅ ∧ ⋅) 8 8 6 8 5 5
p(⋅∣⋅) 85 88 89 78 83 90
Other 7 3 4 13 12 5

T19

p(⋅ ⊃ ⋅) 3
p(⋅ ∧ ⋅) 5
p(⋅∣⋅) 86
Other 6



Probabilistic truth tables Further results from probabilistic truth table tasks

Percentages of response types in Pfeifer and Stöckle-Schobel (2015) (N = 80)
Interpretation T1 T2 T3 T4 T5 T6

p(⋅ ⊃ ⋅) 0 1 1 0 0 3
p(⋅ ∧ ⋅) 5 13 13 10 9 6
p(⋅∣⋅) 63 74 84 78 81 80
Other 28 12 2 12 10 11
∆p 0.33 -0.80 -0.20 -0.75 0.00 0.00

T7 T8 T9 T10 T11 T12

p(⋅ ⊃ ⋅) 1 1 0 0 1 1
p(⋅ ∧ ⋅) 10 8 8 6 8 8
p(⋅∣⋅) 83 79 86 86 89 85
Other 6 12 6 8 2 6
∆p 0.33 -0.25 0.25 0.33 0.25 -0.80

T13 T14 T15 T16 T17 T18

p(⋅ ⊃ ⋅) 0 1 1 1 0 0
p(⋅ ∧ ⋅) 8 8 6 8 5 5
p(⋅∣⋅) 85 88 89 78 83 90
Other 7 3 4 13 12 5
∆p 0.00 0.75 -0.75 0.00 0.00 0.25

T19

p(⋅ ⊃ ⋅) 3
p(⋅ ∧ ⋅) 5
p(⋅∣⋅) 86
Other 6
∆p -0.20



Probabilistic truth tables Further results from probabilistic truth table tasks

Percentages of response types in Pfeifer and Stöckle-Schobel (2015) (N = 80)
Interpretation T1 T2 T3 T4 T5 T6

p(⋅ ⊃ ⋅) 0 1 1 0 0 3
p(⋅ ∧ ⋅) 5 13 13 10 9 6
p(⋅∣⋅) 63 74 84 78 81 80
Other 28 12 2 12 10 11
∆p 0.33 -0.80 -0.20 -0.75 0.00 0.00

T7 T8 T9 T10 T11 T12

p(⋅ ⊃ ⋅) 1 1 0 0 1 1
p(⋅ ∧ ⋅) 10 8 8 6 8 8
p(⋅∣⋅) 83 79 86 86 89 85
Other 6 12 6 8 2 6
∆p 0.33 -0.25 0.25 0.33 0.25 -0.80

T13 T14 T15 T16 T17 T18

p(⋅ ⊃ ⋅) 0 1 1 1 0 0
p(⋅ ∧ ⋅) 8 8 6 8 5 5
p(⋅∣⋅) 85 88 89 78 83 90
Other 7 3 4 13 12 5
∆p 0.00 0.75 -0.75 0.00 0.00 0.25

T19

p(⋅ ⊃ ⋅) 3
p(⋅ ∧ ⋅) 5
p(⋅∣⋅) 86
Other 6
∆p -0.20
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Further results
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Further results
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2013a; Pfeifer & Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017)

▸ whether
∆p = p(C ∣A) − p(C ∣¬A) > 0

is violated or not has no impact on the responses (Pfeifer & Tulkki, in prep.)

▸ “experts”: 80% conditional probability responses and no shifts
▸ apparent pragmatic/relevance effect when conditionals are “packed” (e.g.,
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“unpacked” (“If the card shows a 2, then the card shows a 2 or a 4”):
Most people judge (correctly) p(even∣x = 2) = 1



Probabilistic truth tables Further results from probabilistic truth table tasks

Further results
p(C ∣A) best predictor for beliefs in conditionals, even if

▸ x1, . . . , x4 is precise or imprecise (Pfeifer, 2013a)

▸ the conditional is formulated as a causal conditional (Over et al., 2007;

Pfeifer & Stöckle-Schobel, 2015) or as an abductive conditional (Pfeifer & Tulkki, 2017) or as
. . .

▸ . . . a counterfactual, formulated by a fact (not A) and a conditional in
subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer,

2013a; Pfeifer & Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017)

▸ whether
∆p = p(C ∣A) − p(C ∣¬A) > 0

is violated or not has no impact on the responses (Pfeifer & Tulkki, in prep.)

▸ “experts”: 80% conditional probability responses and no shifts
▸ apparent pragmatic/relevance effect when conditionals are “packed” (e.g.,

“If the card shows a 2, then the card shows an even number”) or
“unpacked” (“If the card shows a 2, then the card shows a 2 or a 4”):
Most people judge (correctly) p(even∣x = 2) = 1
but (incorrectly) p(x = 2 ∨ x = 4∣x = 2) = 0 (Fugard, Pfeifer, & Mayerhofer, 2011)
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Nested conditionals Generalised modus ponens

From modus ponens to generalised modus ponens

Modus ponens Generalised modus ponens

(Categorical premise) A A∣H
(Conditional premise) If A, then C If A∣H, then C

(Conclusion) C C

Sample instantiation (Gibbard, 1981, p. 237):
A∣H³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

The cup breaks if dropped.

If

A∣H³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
the cup breaks if dropped, then

C³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
the cup is fragile.

Therefore,

C³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
the cup is fragile.
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Generalised Probabilistic MP (Sanfilippo, Pfeifer, & Gilio, 2017)

Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H, then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?



Nested conditionals Generalised modus ponens
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Generalised Probabilistic MP (Sanfilippo, Pfeifer, & Gilio, 2017)

Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H, then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?

What does the conditional premise mean? It is a conditional random quantity.

How can we assess its uncertainty? By its prevision (denoted by P).

In betting terms, µ = P[C ∣(A∣H)] represents the amount you agree to pay, with the
proviso that you will receive the quantity:

C ∣(A∣H) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if A ∧H ∧ C true,
0, if A ∧H ∧ ¬C true,
µ, if ¬A ∧H true,
x + µ(1 − x), if ¬H ∧ C true,
µ(1 − x), if ¬H ∧ ¬C true.
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Generalised Probabilistic MP (Sanfilippo, Pfeifer, & Gilio, 2017)

Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H, then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?

What does the conditional premise mean? It is a conditional random quantity.

How can we assess its uncertainty? By its prevision (denoted by P).

In betting terms, µ = P[C ∣(A∣H)] represents the amount you agree to pay, with the
proviso that you will receive the quantity:

C ∣(A∣H) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if A ∧H ∧ C true,
0, if A ∧H ∧ ¬C true,
µ, if ¬A ∧H true,
x + µ(1 − x), if ¬H ∧ C true,
µ(1 − x), if ¬H ∧ ¬C true.

Since (C ∣A)∣H≠C ∣(A ∧H), the Import-Export Principle does not hold. Thus, Lewis’
first triviality result (1976) is avoided (Gilio & Sanfilippo, 2014).
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Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H, then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?

How do we propagate the uncertainty from the premises to the conclusion?

Theorem
Given any coherent assessment (x , y) on {A∣H,C ∣(A∣H)}, with A,C ,H

logically independent, but A ≠ � and H ≠ �. The conclusion p(C) is
coherent iff

xy ≤ p(C) ≤ xy + 1 − x
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Generalised modus ponens (Sanfilippo, Pfeifer, & Gilio, 2017, Theorem 5, p. 487)

Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H, then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?

How do we propagate the uncertainty from the premises to the conclusion?

Theorem
Given any coherent assessment (x , y) on {A∣H,C ∣(A∣H)}, with A,C ,H

logically independent, but A ≠ � and H ≠ �. The conclusion p(C) is
coherent iff

xy ≤ p(C) ≤ xy + 1 − x ,

which are just the same probability propagation rules as in the non-nested
probabilistic modus ponens. (I.e., from p(A) = x and p(C ∣A) = y infer xy ≤ P(C) ≤ xy + 1 − x.)
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Nested conditionals An application to counterfactuals

Data of the PTTT revisited
Most people interpret their beliefs in conditionals by p(C ∣A) even if

▸ x1, . . . , x4 may be imprecise (Pfeifer, 2013a)

▸ the conditional is formulated as a causal conditional (Over et al., 2007;

Pfeifer & Stöckle-Schobel, 2015) or an abductive conditional (Pfeifer & Tulkki, 2017) or as . . .
▸ . . . a counterfactual, formulated by a fact (not A) and a conditional in

subjunctive mood If A were the case, C would be the case (see, e.g., Pfeifer, 2013a;

Pfeifer & Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017).

Why does conditional probability predict counterfactuals?

Formally (see, e.g. Gilio & Sanfilippo, 2013),

belief in counterfactual³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Prevision [(C ∣A) ∣

fact«
¬A ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cond. random quantity

=

belief in indicative conditional³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Probability (C ∣

assumed©
A´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cond.event

) .
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Aristotle’s Theses

AT #1: ¬(¬A→ A)
¬(¬A ⊃ A) ≡ ¬A ∧ ¬A ≡ ¬A

AT #2: ¬(A→ ¬A)
¬(A ⊃ ¬A) ≡ A ∧ A ≡ A
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AT #1: ¬(¬A→ A)
▸ P(¬(¬A ⊃ A)) = P(¬A)
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Aristotle’s Theses: Prob. log. predictions (Pfeifer, 2012a, The Monist)

AT #1: ¬(¬A→ A)
▸ P(¬(¬A ⊃ A)) = P(¬A)
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Aristotle’s Theses: Prob. log. predictions (Pfeifer, 2012a, The Monist)

AT #1: ¬(¬A→ A)
▸ P(¬(¬A ⊃ A)) = P(¬A)
▸ P(A∣¬A) = 0, its negation: P(¬A∣¬A) = 1

AT #2: ¬(A→ ¬A)
▸ P(¬(A ⊃ ¬A)) = P(A)
▸ P(¬A∣A) = 0, its negation: P(¬¬A∣A) = P(A∣A) = 1
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Experiment 1: Abstract version, Aristotle’s Thesis #1
The letter “A” denotes a sentence, like “It is raining”.

There are sentences, where you can infer only on the basis of their logical form, whether
they are guaranteed to be false or guaranteed to be true. For example:

▸ “A and not-A” is guaranteed to be false.
▸ “A or not-A” is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical form,
whether they are true or false. The sentence “A” (“It is raining.”), for example, can be
true but it can just as well be false: this depends upon whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If not-A, then A.

The sentence in the box is guaranteed to be false ◻

The sentence in the box is guaranteed to be true ◻

One cannot infer whether the sentence is true or false ◻
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Experiment 1: Abstract version, Aristotle’s Thesis #2
The letter “A” denotes a sentence, like “It is raining”.

There are sentences, where you can infer only on the basis of their logical form, whether
they are guaranteed to be false or guaranteed to be true. For example:

▸ “A and not-A” is guaranteed to be false.
▸ “A or not-A” is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical form,
whether they are true or false. The sentence “A” (“It is raining.”), for example, can be
true but it can just as well be false: this depends upon whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If A, then not-A.

The sentence in the box is guaranteed to be false ◻

The sentence in the box is guaranteed to be true ◻

One cannot infer whether the sentence is true or false ◻



Aristotle’s theses and other connexive principles

Experiment 1: Sample (Pfeifer, 2012a, The Monist)

▸ N = 141

▸ all psychology students (University of Salzburg)

▸ 91% third semester

▸ 78% female

▸ median age: 21 (1st Qu. = 20, 3rd Qu. =23)
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Aristotle’s Thesis: Results (Pfeifer, 2012a, The Monist. Figure 2)
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wide scope

(N) Negating the consequent: (A→ ¬ ¬A)±
narrow scope
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narrow scope

(W) and (N) are well defined for ∧ and ⊃.
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Scope ambiguities (Pfeifer, 2012a, The Monist)

(W) Negating the conditional: ¬ (A→ ¬A)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wide scope

(N) Negating the consequent: (A→ ¬ ¬A)±
narrow scope

(W) and (N) are well defined for ∧ and ⊃. Conditional events, B ∣A, are
usually negated by (N), P(¬B ∣A).
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Experiment 2: Design (Pfeifer, 2012a, The Monist)

Between participants: Explicit (n1 = 20) vs. implicit negation (n2 = 20)
Within participants: 12 Tasks

Task Name Argument form

1 Aristotle’s Thesis 1 ¬(A→ ¬A)
2 Negated Reflexivity ¬(A→ A)
3 Aristotle’s Thesis 2 ¬(¬A→ A)
4 Reflexivity A→ A

5 Contingent Arg. 1 A→ B

6 Contingent Arg. 2 ¬(A→ B)
7-10 4 Probabilistic truth-table tasks
11 Paradox 1 from B infer A→ B

12 Neg. Paradox 1 from B infer A→ ¬B
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Experiment 2: Predictions (Pfeifer, 2012a, The Monist)

Argument form Scope
wide narrow

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅

¬(A→ ¬A) T CT T T
¬(A→ A) F F CT CT
¬(¬A→ A) T CT T T

A→ A T T T CT
A→ B CT CT CT CT

¬(A→ B) CT CT CT CT
from B infer A→ B U H U
from B infer A→ ¬B U H L

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability
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Experiment 2: Predictions ⋅∣⋅ against wide scope of ⋅ ⊃ ⋅

Argument form Scope
wide narrow

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅

¬(A→ ¬A) T CT T T
¬(A→ A) F F CT CT
¬(¬A→ A) T CT T T

A→ A T T T CT
A→ B CT CT CT CT

¬(A→ B) CT CT CT CT
from B infer A→ B U H U
from B infer A→ ¬B U H L

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability
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Experiment 2: Predictions ⋅∣⋅ against narrow scope of ⋅ ⊃ ⋅

Argument form Scope
wide narrow

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅

¬(A→ ¬A) T CT T T
¬(A→ A) F F CT CT
¬(¬A→ A) T CT T T

A→ A T T T CT
A→ B CT CT CT CT

¬(A→ B) CT CT CT CT
from B infer A→ B U H U
from B infer A→ ¬B U H L

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Aristotle’s theses and other connexive principles

Experiment 2: Sample (Pfeifer, 2012a, The Monist)

▸ N = 40 (University of Salzburg)

▸ no psychology students

▸ individual tested

▸ 50% female

▸ median age: 22 (1st Qu. = 21, 3rd Qu. =23)
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Experiment 2: Results (Pfeifer, 2012a, The Monist)

Argument form Scope Responses
wide narrow in percent

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅ T F CT

¬(A→ ¬A) T CT T T 78 18 5
¬(A→ A) F F CT CT 10 88 2
¬(¬A→ A) T CT T T 80 13 8

A→ A T T T CT 93 3 5
A→ B CT CT CT CT 0 13 88

¬(A→ B) CT CT CT CT 20 3 78
from B infer A→ B U H U 40 0 60
from B infer A→ ¬B U H L 5 30 65

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability
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Experiment 2: Results (Pfeifer, 2012a, The Monist)

Argument form Scope Responses
wide narrow in percent

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅ T F CT

¬(A→ ¬A) T CT T T 78 18 5
¬(A→ A) F F CT CT 10 88 2
¬(¬A→ A) T CT T T 80 13 8

A→ A T T T CT 93 3 5
A→ B CT CT CT CT 0 13 88

¬(A→ B) CT CT CT CT 20 3 78
from B infer A→ B U H U 40 0 60
from B infer A→ ¬B U H L 5 30 65

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability
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. . . and go to
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Other connexive principle: Aristotle’s Second Thesis

¬((A → B) ∧ (¬A→ B))

p(B ∣A) does not constrain p(B ∣¬A) and vice versa. Therefore, Aristotle’s
Second Thesis does not hold.



Aristotle’s theses and other connexive principles

Other connexive principle: Aristotle’s Second Thesis

¬((A → B) ∧ (¬A→ B))

p(B ∣A) does not constrain p(B ∣¬A) and vice versa. Therefore, Aristotle’s
Second Thesis does not hold.

Also in the theory of conditional random quantities, the prevision in
¬((B ∣A) ∧ (B ∣¬A)) is not in general equal to 1.
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Connexive principle: Boethius’ theses

(BT1) (A → B)→ ¬(A→ ¬B)
(BT2) (A → ¬B)→ ¬(A→ B)
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Connexive principle: Boethius’ theses

(BT1) (A → B)→ ¬(A→ ¬B)
(BT2) (A → ¬B)→ ¬(A→ B)

Both versions of Boethius’ theses hold under the narrow scope negation
(e.g., for (BT1) note that ¬¬B ∣A = B ∣A).
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¬((A → B) ∧ (A → ¬B))
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Connexive principle: Abelard’s First Principle

¬((A → B) ∧ (A → ¬B))

If p(B ∣A) = x , then, by coherence p(¬B ∣A) = 1 − x . Since, in general
p(B ∣A) + p(¬B ∣A) = 1, it cannot be the case that both, p(B ∣A) and
p(¬B ∣A) are “high” (i.e., > .5) Therefore, Abelard’s First Principle holds.
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Connexive principle: Abelard’s First Principle

¬((A → B) ∧ (A → ¬B))

If p(B ∣A) = x , then, by coherence p(¬B ∣A) = 1 − x . Since, in general
p(B ∣A) + p(¬B ∣A) = 1, it cannot be the case that both, p(B ∣A) and
p(¬B ∣A) are “high” (i.e., > .5) Therefore, Abelard’s First Principle holds.

Within the theory of conditional random quantities, we observe that:

(B ∣A) ∧ (¬B ∣A) = �∣A
The only coherent assessment of �∣A is 0. Therefore, Abelard’s First
Principle holds.
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Argument strength and Ellsberg’s paradox What is argument strength?

What is argument strength?
argument

premise⟨ premise(s) , conclusion ⟩

form
(Pfeifer & Kleiter, 2006a)

concrete argument (Pfeifer, 2007, 2013b)

uncertain consequence relation
Bayes’ theorem

(e.g. Hahn & Oaksford, 2006)

dynamic

ignores the structure premises: e.g.,
how shall we assess our degree of belief in
conclusion©

C ∣
premises³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(A and (C ∣A)) ?



Argument strength and Ellsberg’s paradox What is argument strength?

What is argument strength?
argument

premise⟨ premise(s) , conclusion ⟩

form
(Pfeifer & Kleiter, 2006a)

concrete argument (Pfeifer, 2007, 2013b)

uncertain consequence relation
measures of confirmation (see Crupi, Tentori, & Gonzales, 2007):

D(e,h) = p(h∣e) − p(h) (Carnap, 1962)

S(e,h) = p(h∣e) − p(h∣¬e) (Christensen, 1999)

M(e,h) = p(e∣h) − p(e) (Mortimer, 1988)

N(e,h) = p(e∣h) − p(e∣¬h) (Nozick, 1981)

C(e,h) = p(e ∧ h) − p(e) × p(h) (Carnap, 1962)

R(e,h) = [p(h∣e)/p(h)] − 1 (Finch, 1960)

G(e,h) = 1 − [p(¬h∣e)/p(¬h)] (Rips, 2001)

L(e,h) =
p(e∣h) − p(e∣¬h)

p(e∣h) + p(e∣¬h)
(Kemeny & Oppenheim, 1952)



Argument strength and Ellsberg’s paradox What is argument strength?
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What is argument strength?
argument

premise⟨ premise(s) , conclusion ⟩

form
(Pfeifer & Kleiter, 2006a)

concrete argument (Pfeifer, 2007, 2013b)

uncertain consequence relation

ignores the structure of the premises

deductive consequence relation
(Pfeifer, 2007, 2013b)

local
static

sensitive to the premise structure

Idea: An argument ist strong iff
its conclusion probability is high

and precise
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Measuring argument strength (Pfeifer, 2013b)

Let x ′ and x ′′ denote the tightest coherent lower and upper probability
bounds of the conclusion C of an argument A, respectively.

The argument strength s is defined by

s =def.

precision³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1 − (x ′′ − x ′))×

location³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
x ′ + x ′′

2
,

where 0 ≤ s ≤ 1, and 0 equals minimum and 1 equals maximum argument
strength.
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Ellsberg paradox (Ellsberg, 1961, p. 653f)

30 red balls; 60 black or yellow balls

(a) $100 if red, $0 otherwise p(R) = .33
(b) $100 if black, $0 otherwise 0 ≤ p(B) ≤ .67
(c) $100 if red or yellow, $0 otherwise .33 ≤ p(R ∨ Y ) ≤ 1
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(a) ≻ (b) and (d) ≻ (c)

☇
If p(R) > p(B), then p(B ∨ Y )<p(R ∨ Y )
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Ellsberg paradox — epistemic version (Pfeifer & Pankka, 2017)

30 red balls; 60 black or yellow balls

p(R) = .33
p(B ∨Y ) = .67

p(R) = .33 0 ≤ p(B) ≤ .67 .33 ≤ p(R ∨Y ) ≤ 1 p(B ∨ Y ) = .67
A1 for (a) A2 for (b) A3 for (c) A4 for (d)
s(A1)=.33 s(A2) = .11 s(A3) = .22 s(A4) = .67

Measure s matches the data (Pfeifer & Pankka, 2017):
s(A1) > s(A2) and s(A4) > s(A3)
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Experiment
Sample:

▸ 60 students (University of Helsinki)

▸ none of them studied psychology, mathematics, statistics, or
philosophy

▸ 15 ¤ compensation for participation

▸ individual testing

Design:

Presented probabilities Formulation
epistemic persuasive

Premise & conclusion n1 = 10 n2 = 10
Conclusion only n3 = 10 n4 = 10
Premise only n5 = 10 n6 = 10
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Task material (Argument ranking task)

You will be presented with two arguments. Your task will be to tell, which
one is stronger.

There is an urn that contains 90 balls, of which 30 are red and 60 are black
or yellow. The ratio of the black and yellow balls is unknown—there may
be from 0 to 60 black (or yellow) balls. One ball is drawn from the urn and
you are asked to choose a bet between two options. Bet 1 means that you
will win $100, if the ball drawn from the urn is red. Bet 2 means that you
will win $100, if the ball is black.

Two of your friends are arguing about which bet you should choose. They
both give you an argument.
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Task material (Argument ranking task, persuasive condition)
Argument 1 for Bet 1

I am % sure that the ball drawn from the urn is red.

I am % sure that the ball drawn from the urn is black or yellow.
Therefore, I am 33 % sure that the ball drawn from the urn is red.

Argument 2 for Bet 2

I am % sure that the ball drawn from the urn is red.

I am % sure that the ball drawn from the urn is black or yellow.
Therefore, I am at least 0 % and at most 67 % sure that the ball drawn from the urn
is black.

Question Which argument convinces you stronger which bet to choose? Tick a box.

◻ Argument 1 ◻ Argument 2
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Task material (Argument rating task, persuasive condition)
Argument 2 for Bet 2

I am % sure that the ball drawn from the urn is red.

I am % sure that the ball drawn from the urn is black or yellow.
Therefore, I am at least 0 % and at most 67 % sure that the ball drawn from the urn
is black.

Question: How strong is Argument 2 for convincing to choose Bet 2? Mark your response
on the following scale with a cross.



Argument strength and Ellsberg’s paradox Experiment

Structure of booklets

1. Introduction of task material

2. Argument ranking tasks

3. Argument rating tasks

4. (original) Ellsberg tasks
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Results
▸ no significant differences among the groups (epistemic/persuasive,

presented percentages)
▸ ranking and rating responses are consistent with Ellsberg responses

Table: Percentages of argument preferences in the argument ranking tasks and in
the (original) Ellsberg tasks (N = 60).

% arg. ranking Ellsberg % arg. ranking Ellsberg
Bet1 73,3 93,3 Bet3 25,0 23,3
Bet2 26,7 6,7 Bet4 75,0 76,7

Table: Means and standard deviations (SD) of the argument strength ratings s(⋅)
on a scale from 0 (“extremely weak”) to 10 (“extremely strong”; N = 60).

s(A1) s(A2) s(A3) s(A4)
Mean 5,20 3,98 5,77 6,95
SD 2,64 2,58 1,74 1,87
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Properties of arguments

An argument is a pair consisting of a premise set and a conclusion.

▸ An argument is logically valid if and only if it is impossible that all
premises are true and the conclusion is false.

▸ An argument is p-valid if and only if the uncertainty of the conclusion
of a valid inference cannot exceed the sum of the uncertainties of its
premises (where “uncertainty of X ” is defined by 1 −P(X )) (Adams, 1975).

▸ An argument is probabilistically informative if and only if it is possible
that the premise probabilities constrain the conclusion probability. I.e.,
if the coherent probability interval of its conclusion is not necessarily
equal to the unit interval [0,1] (Pfeifer & Kleiter, 2006a).
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Log. valid–prob. informative (Pfeifer & Kleiter (2009). Journal of Applied Logic. Figure 1)

logically

valid

probabilistically

informative

[0,1]

[0,1] [l ,u]
[l ,1] [0,u]

l = u

p-valid (=log.valid+prob.inf)
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Motivation

▸ Long history in psychology (starting with Störring (1908))

▸ Aristotelian syllogisms:
▸ either too strict (universal, ∀) or too weak (existential, ∃) quantifiers
▸ not a language for uncertainty / vagueness

▸ Developing coherence based probability logic semantics for Aristotelian
syllogisms
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Name Formalization

Transitivity A→ B ,B → C , therefore A→ C

P(B ∣A) = x ,P(C ∣B) = y ∴ P(C ∣A)∈ [0,1]
Right weakening P(B ∣A) = x ,⊧(B ⊃ C) ∴ P(C ∣A) ∈ [x ,1]
Cut P(B ∣A) = x ,P(C ∣A∧B) = y ,

∴ P(C ∣A) ∈ [xy ,1 − x + xy]
▸ Experimental result: Right weakening is endorsed by almost all

participants (Pfeifer & Kleiter, 2006b, 2010)

▸ Observation: Deleting “A” in Cut yields Modus Ponens.

▸ Experimental result: Non-probabilistic tasks: endorsement rate of
89–100% (Evans et al., 1993); probabilistic tasks: 63%-100% coherent
responses (Pfeifer & Kleiter, 2007)
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Syllogistic types of sentences and figures

Name of Proposition Type PL formula

(A) Universal affirmative ∀x(Sx ⊃ Px) ∧ ∃xSx
(I) Particular affirmative ∃x(Sx ∧Px)
(E) Universal negative ∀x(Sx ⊃ ¬Px) ∧ ∃xSx
(O) Particular negative ∃x(Sx ∧ ¬Px)

Figure name
1 2 3 4

Premise 1 MP PM MP PM

Premise 2 SM SM MS MS

Conclusion SP SP SP SP

256 possible syllogisms, 24 Aristotelianly-valid, 9 require ∃xSx
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Traditionally valid syllogisms (see, e.g., Pfeifer, 2006a, Figure 2)
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Example: Syllogism

(A) All philosophers are mortal.
(A) All members of the Vienna Circle are philosophers.

(A) All members of the Vienna Circle are mortal.
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(A) All M are P

(A) All S are M

(A) All S are P

(A) ∀x(Mx ⊃ Px) (∧∃xMx)
(A) ∀x(Sx ⊃Mx) (∧∃xSx)
(A) ∀x(Sx ⊃ Px)

Figure name
1 2 3 4

Premise 1 MP PM MP PM

Premise 2 SM SM MS MS

Conclusion SP SP SP SP

. . . transitive structure of Figure 1
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Modus Barbari

(A) All M are P

(A) All S are M

(I) At least one S is P

(A) ∀x(Mx ⊃ Px) (∧∃xMx)
(A) ∀x(Sx ⊃Mx) ∧∃xSx

(A) ∃x(Sx ∧ Px)



Coh. based prob. semantics of categ. Syllogisms

Modus Darii

(A) All M are P

(I) At least one S is M

(I) At least one S is P

(A) ∀x(Mx ⊃ Px) (∧∃xMx)
(I) ∃x(Sx ∧Mx) (∧∃xSx)
(I) ∃x(Sx ∧ Px)
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Previous work: Johann-Heinrich Lambert

Source: Wikimedia Commons
http://tinyurl.com/lbjcruu

*1728 in Mulhouse, former exclave of Switzerland
(now Alsace, France) †1777 in Berlin

Important contributions to

▸ mathematics (e.g., proof that π is irrational)
▸ physics (particularly optics), astronomy and map

projections
▸ philosophy

▸ distinction between subjective and objective
appearances

▸ influenced, among others, I. Kant and J. S. Mill
▸ logic (syllogisms)

http://tinyurl.com/lbjcruu
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Previous work: Johann-Heinrich Lambert

Source: Wikimedia Commons Source: DTA:SUB Göttingen, 8 PHIL II, 1905:2
http://tinyurl.com/lbjcruu http://tinyurl.com/ldpuc5c

http://tinyurl.com/lbjcruu
http://tinyurl.com/ldpuc5c
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Previous work: Johann-Heinrich Lambert (1764)

§. 189. Man habe nun zween SĽŃe We have now two sentences (p. 358f)
3
4 A sind B exactly 3

4
of all A have predicate B

C iĆ A. C is an individuum which is A

[. . .]
Wenn man demnaĚ den SĚlu zieht, da C, B

sey, so iĆ dieser SĚlu niĚt vŹllig gewi, sondern eŊ

geht ihm 14 an der Gewiheit ab, daŊ will sagen,

seine WahrsĚeinliĚkeit iĆ 34 . DieseŊ drđĘen wir nun

folgendermaen auŊ:

If one draws an inference based on this, that C
were B, then this inference is not completely
certain, rather it lacks 1

4
certainty. This means

its probability is 3

4
. We express this now as

follows:

C iĆ 34 B. C (is 3

4
) B.

[. . .] so merken wir an, da der zwisĚen daŊ
BindwŹrtgen iĆ und daŊ PrĽdicat B geseŃte BruĚ,

niĚt daŊ PrĽdicat, sondern daŊ BindwŹrtgen angehe.

[. . .] eŊ sey, da man ihn vorseŃe oder anhĽnge.

we note, that the fraction between the copula
“is” and the predicate B does not relate to the
predicate, but to the copula [. . . ] it is pre- or
postfixed.
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3
4 A sind B. Exactly 3

4
of all A are B

2
3 C sind A. Exactly 2

3
of all C are A

2
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3
of all C ( 3

4
are) B.
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The probability heuristics model (Chater & Oaksford, 1999; Oaksford & Chater, 2009)

Definitions of the basic sentences:

Quantified statement Prob. interpretation
(A) All S are P p(P ∣S) = 1
(E) No S is P p(P ∣S) = 0
(I) Some S are P p(P ∣S) > 0
(O) Some S are not-P p(P ∣S) < 1

Most S are P 1 −∆ < p(P ∣S) < 1
Few S are P 0 < p(P ∣S) <∆

. . . where ∆ is small
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The probability heuristics model (Chater & Oaksford, 1999, p. 201)
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The probability heuristics model: Probabilistic syllogisms

▸ Assumption: Conditional independence between the end terms (i.e., S
and P) given the middle term (i.e., M):

p(S ∧P ∣M) = p(S ∣M)p(P ∣M)
▸ Sample reconstruction of Modus Barbara (assumed implicitly

p(S) > 0, p(M) > 0):
(A) p(P ∣M) = 1
(A) p(M ∣S) = 1

(CI assumption) p(S ∧P ∣M) = p(S ∣M)p(P ∣M)
(A) p(P ∣S) = 1

Note, that we do not assume p(S) > 0 and p(M) > 0 in the coherence
framework. Moreover, if p(S ∣M)= 0, then p(S ∧P ∣M)= 0. Then, the
premises are satisfied but 0 ≤ p(P ∣S) ≤ 1 is coherent. Thus, Modus
Barbara does not hold.
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Towards Probabilistic Modus Barbara

All M are P p(P ∣M) = 1
All S are M p(M ∣S) = 1
All S are P 0 ≤ p(P ∣S) ≤ 1

All M are P p(P ∣M) = 1
( Existential import: M p(M) > 0 )
All S are M p(M ∣S) = 1
Existential import: S p(S) > 0
All S are P p(P ∣S) = 1

If p(S) = γ and p(M ∣S) = 1, then γ ≤ p(M) ≤ 1
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Existential import: Different options
▸ Positive probability of the conditioning event, e.g.:

All S are P : p(S) > 0

▸ p(S ∣M) > 0 (and p(M ∣P) > 0) (Dubois, Godo, López de Màntaras, & Prade, 1993)

▸ Replacing the first premise by a logical constraint, e.g.:
⊧ (M ⊃ P)
p(M ∣S) = 1

p(P ∣S) = 1
▸ Strengthening the antecedent of the first premise, e.g.:

p(P ∣S∧M) = 1
p(M ∣S) = 1

p(P ∣S) = 1
▸ Conditional event EI: Positive probability of the conditioning event, given the

disjunction of all conditioning events (Gilio, Pfeifer, & Sanfilippo, 2016):
p(P ∣M) = 1
p(M ∣S) = 1
p(S ∣S ∨M) > 0

p(P ∣S) = 1
▸ p(S ∣S ∨M) > 0 neither implies p(S) > 0 nor p(S ∣M) > 0
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x y 0 [0, 1]



Coh. based prob. semantics of categ. Syllogisms Figure 1: coherent probabilistic syllogisms

Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)



Coh. based prob. semantics of categ. Syllogisms Figure 1: coherent probabilistic syllogisms

Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)
1 y t > 0 [y , 1]



Coh. based prob. semantics of categ. Syllogisms Figure 1: coherent probabilistic syllogisms

Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)
1 y t > 0 [y , 1]
.9 1 1 [.9, .9]
.9 1 .5 [.8, 1]
.9 1 .2 [.5, 1]
.9 1 .1 [0, 1]



Coh. based prob. semantics of categ. Syllogisms Figure 1: coherent probabilistic syllogisms

Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)
1 y t > 0 [y , 1]
.9 1 1 [.9, .9]
.9 1 .5 [.8, 1]
.9 1 .2 [.5, 1]
.9 1 .1 [0, 1]
1 ]0,1] t > 0 ]0,1] (Modus Darii)



Coh. based prob. semantics of categ. Syllogisms Figure 1: coherent probabilistic syllogisms

Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)
1 y t > 0 [y , 1]
.9 1 1 [.9, .9]
.9 1 .5 [.8, 1]
.9 1 .2 [.5, 1]
.9 1 .1 [0, 1]
1 ]0,1] t > 0 ]0,1] (Modus Darii)

If p(S ∣S ∨M) > 0, then z ′ = max{0, xy − (1−t)(1−x)
t

}
z ′′ = min {1, (1 − x)(1 − y) + x

t
} .

(Theorem 3 of Gilio, Pfeifer, and Sanfilippo (2015). Transitive reasoning with imprecise probabilities.)



Coh. based prob. semantics of categ. Syllogisms Figure 1: coherent probabilistic syllogisms

Time for a quiz!

. . . and go to

kahoot.it

kahoot.it
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Syllogistic sentences as defaults (Gilio, Pfeifer, & Sanfilippo, 2016)

▸ Using our coherence interpretation, we also represent (A) by the
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▸ Using our coherence interpretation, we also represent (A) by the
following default:

S ∣∼ P (meaning: p(P ∣S) = 1)
▸ . . . its contradictory (O) by the negated default (¬(S ∣∼ P), short:

S ∣∼/ P):
S ∣∼/ P (meaning: p(P ∣S) < 1)

Then, we interpret

▸ (E) by the default S ∣∼ ¬P (meaning: p(P ∣S) = 0)

▸ (I) by the negated default S ∣∼/ ¬P (meaning: p(P ∣S) > 0)

Again, we do not presuppose that p(S) > 0!
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Bridges to qualitative reasoning (e.g., Gilio, Pfeifer, & Sanfilippo, 2016)

The following versions of Weak Transitivity (Freund, Lehmann, & Morris, 1991)

correspond to syllogisms and are theorems in our framework:

Modus Barbara:
(B ∣∼ C ,A ∣∼ B ,A ∨ B ∣∼ ¬A) ⊧p A ∣∼ C .

Modus Darii:
(B ∣∼ C ,A ∣∼ ¬B ,A ∨ B ∣∼/ ¬A) ⊧p A ∣∼/ ¬C .
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