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Abstract. The ribbon number r(K) of a ribbon knot K ⊂ S3 is the minimal number of
ribbon intersections contained in any ribbon disk bounded by K. We find new lower bounds
for r(K) using det(K) and ∆K(t), and we prove that the set Rr = {∆K(t) : r(K) ≤ r}
is finite and computable. We determine R2 and R3, applying our results to compute
the ribbon numbers for all ribbon knots with 11 or fewer crossings, with three excep-
tions. Finally, we find lower bounds for ribbon numbers of links derived from their Jones
polynomials.

1. Introduction

At the inception of knot theory, crossing number emerged as the original knot invariant,
the minimal number of crossings in any diagram D for K. Crossing numbers have been
used for over a century to organize knot tables by complexity, guided by the principle that
for a given n, it is possible to enumerate all of the finitely many possible knot diagrams with
exactly n crossings (distinguishing them is a more subtle task). In this paper, we seek to
understand another invariant, the ribbon number of a ribbon knot K ⊂ S3. We say that K is
ribbon if K is the boundary of an immersed disk D in S3 with only ribbon singularities (see
Figure 1), called a ribbon disk. Denote r(D) the number of ribbon singularities contained
in D. The ribbon number r(K) of a ribbon knot K is the minimum of r(D) taken over
all ribbon disks D bounded by K. Note that formally, a knot diagram D is an immersed
curve in 2-space, but we can perturb D near its crossings to realize the corresponding knot
K embedded in 3-space. Similarly, a ribbon disk D is immersed in 3-space, but we can
perturb D near its ribbon intersections to construct a smoothly embedded disk in D4. This
relationship, and the fact that both invariants involve minimizing self-intersections, gives
rise to a heuristic:

Heuristic. Ribbon number is like a crossing number for ribbon disks.

In trying to compute ribbon numbers, however, one encounters an issue that threatens the
heuristic: For any r ≥ 2, there are infinitely many different knots K such that r(K) = r, and
so this presents a difficulty. To address this issue, we use Alexander polynomials, proving
that the set Rr, the set of all Alexander polynomials ∆K(t) of ribbon knots K such that
r(K) ≤ r, is a finite set.

Theorem 1.1. For each r, the set Rr = {∆K(t) : r(K) ≤ r} is finite and computable. In
particular,

R2 = {1,∆31#31
,∆61};

R3 = {1,∆31#31
,∆61 ,∆88 ,∆89 ,∆927 ,∆941 ,∆10137 ,∆10153 ,∆11n116}.

This theorem is sufficiently powerful to allow us to determine the ribbon numbers for all
ribbon knots in the knot table up to 11 crossings, with three exceptions: 10123, 11a164, and
11a326, whose (potentially minimal) ribbon disks are shown in Figure 1.
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Theorem 1.2. The ribbon numbers for knots up to 11 crossings, except for 10123, 11a164,
and 11a326, are computed in Table 1 (knots up to 10 crossings) and Table 2 (knots with 11
crossings).

1

1 1

Figure 1. Ribbon disks for 10123 (left), 11a164 (center), and 11a326 (right).
Do the disks realize the ribbon numbers of these knots?

The proof of Theorem 1.1 involves associating to any ribbon disk D a combinatorial
object called a ribbon code, a tree with markings on its edges, that can be used to compute
∆∂D(t). We then obtain the explicit descriptions of R2 and R3 by enumerating all possible
ribbon codes.

Along the way to finding R2 and R3, we develop more general bounds for all ribbon
numbers involving Alexander polynomials and knot determinants. It is well-known that if
K is ribbon, then its Alexander polynomial ∆K(t) can be expressed as ∆K(t) = f(t) ·f(t−1)
for some f(t) ∈ Z[t, t−1] such that f(1) = ±1. Using a result of Yasuda [Yas18], we prove

Theorem 1.3. Suppose K is a ribbon knot such that r(K) = r. Then ∆K(t) can be
expressed as f(t) · f(t−1) for f(t) ∈ Z[t] such that

f(t) = a0 + a1t+ · · ·+ art
r and |ai| ≤

(
r

i

)
.

As a corollary, we obtain

Corollary 1.4. Suppose K is a ribbon knot. Then

detK ≤ (2r(K) − 1)2.

Remark 1.5. The curious reader might wonder how the bounds given by Theorem 1.1,
Theorem 1.3, and Corollary 1.4 are related. For r ≤ 3, Theorem 1.1 is strictly stronger
than Theorem 1.3, and Theorem 1.3 is strictly stronger than Corollary 1.4: For example,
if K is the knot 11n49 or 11n116, Theorem 1.3 implies that r(K) ≥ 2, while ∆K(t) /∈ R2,
and so Theorem 1.1 implies r(K) ≥ 3. For K ′ = 103, Theorem 1.3 yields r(K ′) ≥ 3, while
∆K′(t) /∈ R3, and so Theorem 1.1 says r(K ′) ≥ 4. For K ′′ = 10153, we have det(K ′′) = 1
and so Corollary 1.4 provides no useful information. Theorem 1.3, however, asserts that
r(K ′′) ≥ 3.
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Finally, we prove an analogue of Corollary 1.4 for ribbon links, where a ribbon link L
bounds a collection of immersed disks in S3 with only ribbon singularities. In [Eis09],
Eisermann proved that if L is an n-component ribbon link, then its Jones polynomial VL(q)
is divisible by the Jones polynomial of the n-component unlink, (q + q−1)n−1, and so the
generalized Jones determinant detn(VL) can be defined as

detn(VL) =

(
VL(q)

(q + q−1)n−1

)
q=i

,

where the classical determinant det(L) agrees with |det1(VL)|. We prove

Theorem 1.6. Suppose L is an n-component ribbon link. Then

|detn(VL)| ≤ 9r(L).

Remark 1.7. The invariant r(K) has seen relatively little attention in the knot theory lit-
erature. To the best of our knowledge, it first appeared in [Miz06], in which Mizuma proved
that for K the Kinoshita-Terasaka knot 11n42, r(K) = 3. In [Ace14], Aceto examined
the relationship between ribbon numbers and symmetric ribbon numbers. A related notion
is the ribbon crossing number of a ribbon 2-knot, which has been more thoroughly exam-
ined (see, for instance, [KT21, Yas01, Yas18]). The reader should be aware that although
there are earlier references to knots of “ribbon number one” (see, for example, [BEMn90]
and [Tan00]), these instances refer to an invariant defined as the minimum number of bands
in a disk-band presentation for a ribbon disk D bounded by K, now more commonly re-
ferred to as the fusion number F(K) of K. We define a disk-band presentation below in
Section 2.

Remark 1.8. A forthcoming manuscript [ABC+] will compute the set R4 and will use this
information to extend the work in this paper to the collection of 12-crossing ribbon knots.

1.1. Organization. In Section 2, we introduce some elementary bounds on ribbon num-
bers, and as a proof of concept, we use these bounds to find the ribbon numbers of the
knots Tp,q#Tp,q. In Section 3, we relate ribbon disks to ribbon 2-knots, prove a folk the-
orem (Lemma 3.1) about the Alexander polynomial of a ribbon knot, and establish Theo-
rem 1.3 and Corollary 1.4. In Section 4, we introduce ribbon codes and explain a procedure
by which a ribbon code determines the Alexander polynomial for the corresponding knot
(Proposition 4.3 and Corollary 4.5). In Section 5, we discuss simplification of ribbon codes
and prove Propositions 5.11 and 5.12, enumerating all possible Alexander polynomials of
ribbon knots with ribbon number at most 2 and 3, respectively. In Section 6, we combine
our results to tabulate ribbon numbers for ribbon knots up to 11 crossings, with data shown
in Tables 1 and 2. In Section 7, we pivot to ribbon links and prove Theorem 1.6, a gener-
alization of Corollary 1.4. Finally, in Section 8, we state several conjectures and questions
to motivate future work.
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guest at MPIM, and he is grateful for the institute’s support. The third author also appre-
ciates the hospitality of the first two authors during visits to the University of Regensburg,
thanks Jeffrey Meier for helpful conversations, and acknowledges his Polymath Jr. REU
group from the summer of 2023 for their energy and insights. Finally, we thank the au-
thors of [KSTI21] for email exchanges related to their work. The first and second author
were supported by the CRC 1085 “higher invariants” at the University of Regensburg. The
third author was supported by NSF awards DMS-2005518 and DMS-2405301 and a Simons
Fellowship.
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2. Preliminaries

We work in the smooth category. In this section, we state several elementary bounds for
ribbon numbers and use these bounds to determine the ribbon numbers r(Tp,q#Tp,q), where

K denotes the mirror image of K and Tp,q is the (p, q)-torus knot. First, we explore upper
bounds, which we obtain by explicit construction and which are related to symmetric union
presentations of ribbon knots. A knot diagram D∗ is a symmetric union presentation if D∗

has a vertical axis of symmetry L such that

(1) Outside a small neighborhood of L, the diagram D∗ has reflection symmetry over
L, and

(2) D∗ meets L in two horizontal strands and some number (possibly zero) of additional
crossings.

See the left panel of Figure 2 for an example. A more precise definition appears in [Lam00].
It is known that every knot with a symmetric union presentation is ribbon (examples of
ribbon disks arising from symmetric union presentations are shown in Figure 1). In addition,
all ribbon knots with 10 or fewer crossings admit a symmetric union presentation, but it is
open whether every ribbon knot admits such a presentation [Lam00, EL07, Lam21].

Given a symmetric union presentation D∗, we form the corresponding partial diagram
D by cutting D∗ along the axis of symmetry L, vertically smoothing each crossing, and
connecting the two horizontal strands by a vertical arc, as shown at right in Figure 2. It
can be shown that since D∗ represents a knot, D is connected. In the special case that D∗

has no crossings on L, then D∗ = D#D, and so we see that a symmetric union presentation
for a ribbon knot generalizes the well-known fact that for any knot K, the connected sum
K#K is ribbon.

a1 a0

1

Figure 2. At left, an example of a symmetric union presentation D∗ for 61.
At right, the corresponding partial diagram D, with vertical arcs labeled as
in the proof of Lemma 2.1.

Lemma 2.1. Suppose D∗ is a symmetric union presentation for a ribbon knot K, where
D∗ has partial diagram D, and a horizontal strand of D is adjacent to ` consecutive under-
crossings away from the axis of symmetry L. Then,

r(K) ≤ c(D)− `,
where c(D) denotes the total number of crossings in D.

Proof. Consider D as a diagram with underlying surface S2, let a0 denote the vertical arc of
D obtained by connecting horizontal strands of D∗, and let a1, . . . , ak denote the arcs in D
obtained by smoothing the crossings of D∗ along the axis of symmetry L. Remove a small
disk neighborhood of a0 to get a diagram D′ for a knotted arc α with underlying surface
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D2. By hypothesis, one endpoint of α+ is adjacent to the ` consecutive under-crossings.
Let N = D2× [−1− ε, 1+ ε] be an embedded 3-ball in S3, and use the diagram D′ to embed

α+ and α− = α+ in small collar neighborhoods of D2 × {1} and D2 × {−1}, respectively.
Now, each point x+ ∈ α+ is connected via a subinterval Ix of a vertical fiber in N to a

point x− ∈ α−. Define

D =
⋃

x+∈α+

Ix+ .

Let J be the knot associated to the diagram D. Then D is a ribbon disk with ∂D = J#J ,
and D contains a ribbon intersection corresponding to each crossing of α, for a total of
c(α) = c(D) ribbon intersections. However, the ` ribbon intersections corresponding to
consecutive under-crossings can be removed via an isotopy of D, resulting in a new ribbon
disk D′ for J#J such that r(D′) = c(D)− `.

Finally, for 1 ≤ i ≤ k, let a±i denote the arcs corresponding to ai in α±, and for 1 ≤ i ≤ k,
define

Ri =
⋃

x+∈a+i

Ix+ .

Then Ri is an embedded rectangle in D′, and we can replace Ri with a half-twisted rectangle

R̃i corresponding to the crossing in D∗ that was smoothed in the construction of the partial

diagram D. Replacing each rectangle Ri with R̃i yields a ribbon disk D∗ such that r(D∗) =
r(D′) and ∂D∗ = K, completing the proof. �

Remark 2.2. For a diagram D, one can define the maximal bridge length `(D) to be
the maximum consecutive number of under-crossings (or over-crossings) contained in D.
Lemma 2.1 then implies that if D is a diagram for a knot J , we have

r(J#J) ≤ c(D)− `(D).

The quantity c(D) − `(D) appears elsewhere as an upper bound for degrees of various
polynomials. See, for instance, [Kid87], [KS03], [Sto03], and [Thi88].

An example of carrying out this construction for the symmetric union presentation of 61

from Figure 2 is shown in Figure 3.

1

Figure 3. At left, construction of the ribbon disk D from the diagram α
and removing a ribbon intersection via isotopy to get D′. At right, a ribbon
disk for 61 obtained from the symmetric union presentation D∗ shown in
Figure 2.

Now, we turn our attention to the more difficult task of finding lower bounds for ribbon
numbers. The first such bound involves the genus g(K) and was observed in [Miz06].
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Lemma 2.3. Let K be a ribbon knot. Then

g(K) ≤ r(K).

Proof. Suppose K bounds a ribbon disk D with r ribbon intersections. Each ribbon inter-
section can be smoothed as in Figure 4 to produce an embedded, orientable surface F such
that g(F ) = r and ∂F = ∂D = K. �

1

Figure 4. At left, a ribbon intersection in D. At right, the smoothing of
the intersection to obtain F .

A similar bound can be obtained using the unknotting number u(K).

Lemma 2.4. Let K be a ribbon knot. Then

u(K)

2
≤ r(K).

Proof. Suppose K bounds a ribbon disk D with r ribbon intersections. Then there exists
a diagram D for K with the property that each ribbon intersection can be removed with
two crossing changes, as shown in Figure 5. The resulting knot K ′ bounds an embedded
disk D′, and it follows that u(K) ≤ 2r. �

1

Figure 5. At left, a ribbon intersection in D. At right, two crossing changes
remove the ribbon intersection.

A disk-band presentation for a ribbon disk D consists of a pair (D,B), where D is a
collection of n pairwise disjoint disks in S3, and B is a collection of embedded pairwise
disjoint rectangles, the bands, such that each rectangle meets the interior of each disk
transversely in a collection of arcs, meets ∂(

⋃
D) in a pair of boundary arcs, and such that

D = (
⋃
D)∪ (

⋃
B). In this case, we note that B contains n−1 bands. Every ribbon disk D

has a disk-band presentation, and the fusion number F(K) is defined to be the minimum
number of bands in a disk-band presentation for a ribbon disk D bounded by K.

Lemma 2.5. Let K be a ribbon knot. Then

F(K) ≤ r(K)− 1.
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Proof. Let D be a ribbon disk for K with r ribbon intersections. Each ribbon intersection
of D gives rise to two arcs in D, one of which, call it a′i has its endpoints on ∂D, and the
other of which, call it ai, has its endpoints in int(D). For each arc ai, let Di be a small
closed disk neighborhood of ai in int(D), and let D be the collection of the disks Di. In
addition, let U =

⋃
∂Di, an unlink. Then the link K ∪ U bounds the embedded planar

surface P = D \ (
⋃
D). Finally, there is a collection of r − 1 arcs in P connecting the r

components of ∂Di, and thickening these arcs yields a collection B of r − 1 bands in P
connecting components of D. Since P is planar, it follows that P \ (

⋃
B) is an embedded

annulus with K as one of its boundary components, and so K is also isotopic in S3 to the
other boundary component of P \ (

⋃
B), as shown in Figure 6. We conclude that (D,B) is

a disk-band presentation for a ribbon disk D′ such that ∂D′ = K, completing the proof. �

1

Figure 6. An example of the annulus P \ (
⋃
B) from the proof of Lemma 2.5.

Remark 2.6. Lemma 2.5 gives a quick argument that no nontrivial knot has ribbon number
one, since r(K) < 2 implies F(K) < 1, and F(K) = 0 if and only if K is the unknot. In
addition, the inequality in Lemma 2.5 is equality for a nontrivial knot K with r(K) = 2.

Remark 2.7. The ribbon disk D′ constructed in Lemma 2.5 need not be identical to the
ribbon disk D used as input. A disk-band presentation for a ribbon disk D with F(D) = 3
and r(D) = 3 appears in Figure 7, where ∂D is the knot 941. Carrying out the process in
Lemma 2.5 yields a new ribbon disk D′, where F(D′) = 2 but r(D′) = 4. See Figure 7.

Remark 2.8. The higher-dimensional analogue of this example is discussed in detail
in [Yas01]; in the context of 2-knots, ribbon number is replaced with “crossing number”
and fusion number is related to “base index.” See Section 3 for further details on ribbon
2-knots.

To conclude this section, we can use these lemmas to determine exact values for r(Tp,q#Tp,q).

This is a particularly nice class of ribbon knots; for instance, F(Tp,q#Tp,q) = min{p, q} − 1
[JMZ20], and their fibered ribbon disks have been studied in great detail (see [MZ22, MZ23]).

Proposition 2.9. Let Tp,q denote the (p, q)-torus knot, with p, q > 0. Then

r(Tp,q#Tp,q) = (p− 1)(q − 1).

Proof. The equation above is symmetric in p and q, so suppose without loss of generality
that p < q. It is well-known that g(Tp,q) = 1

2(p − 1)(q − 1) and genus is additive under

connected sum, so that g(Tp,q#Tp,q) = (p− 1)(q − 1). It follows from Lemma 2.3 that

r(Tp,q#Tp,q) ≥ (p− 1)(q − 1).
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1

Figure 7. A disk-band presentation for a ribbon disk D for the knot 941

with F(D) = r(D) = 3. Carrying out the procedure described in 2.5 yields
another ribbon disk D′ with F(D′) = 2 but r(D′) = 4.

On the other hand, the standard diagram D for Tp,q has c(D) = q(p− 1) and `(D) = p− 1.
Thus, by Lemma 2.1,

r(Tp,q#Tp,q) ≤ q(p− 1)− (p− 1) = (p− 1)(q − 1),

completing the proof. �

Remark 2.10. The statement in Proposition 2.9 can be compared with Theorem 1.2
from [Yas06], which gives the ribbon crossing number of a spun torus knot (see Section 3
for definitions).

3. Doubles of ribbon disks

The notion of a ribbon knot extends to higher dimensions. A 2-knot K ⊂ S4 is a ribbon
2-knot if K bounds an immersed D3 ⊂ S4 with only ribbon intersections. In this case, the
ribbon D3 has a higher-dimensional disk-band presentation consisting of n 3-dimensional 0-
handles and n−1 3-dimensional 1-handles that can intersect the 0-handles in some number
of 2-disks. A more detailed and technical description of ribbon 2-knots appears in Section
2.2 of [CKS04], in which each 0-handle is called a base and each 1-handle is called a band.

Analogous to the classical case, an intersection of a base and band, which must be a
2-disk by definition, is called a ribbon intersection. The ribbon crossing number r-cr(K) of
a ribbon 2-knot is defined to be the minimum number of ribbon intersections contained in
an immersed D3 as described above. If D ⊂ S3 is a ribbon disk for a classical knot K with
r ribbon intersections, then as noted in the introduction, we can perturb D near its ribbon
intersections to construct an embedded disk D4, which we will call an embedded ribbon disk,
and which we will also denote D in an abuse of notation. The union of two copies of D ⊂ D4

glued along the identity map is a ribbon 2-knot K(D) in S4, called the double of D, and
K(D) bounds an immersed D3 ⊂ S4 with the same number of ribbon singularities as the
immersed disk D. See, for instance, Figure 2.5 and the surrounding discussion of [CKS04]
for further details. In this case, K is called the equatorial ribbon knot of K(D), and it is
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also known that every ribbon 2-knot can arise from such a construction. In addition, we
have the following lemma, a folk theorem that we have not seen elsewhere in print.

Lemma 3.1. If K is a ribbon knot bounding a ribbon disk D, then ∆K(t) = f(t) · f(t−1),
where f(t) = ∆K(D)(t) is the Alexander polynomial of the double K(D), which is also equal
to the Alexander polynomial ∆D(t) of the embedded ribbon disk D.

Proof. The statement that ∆K(t) = f(t) · f(t−1) with f(t) the Alexander polynomial of D
is the content of [FNOP24, Corollary 15.11] and is explained in detail in Chapter 15 of that
same reference.

First, we briefly sketch this argument and then explain why f(t) is in fact also the
Alexander polynomial of the double K(D). Let Λ := Z[t±1]. We denote the order of a
finitely generated Λ-module M by ord(M) ∈ Λ (see [Hil12, p.50]). By definition we have

∆K(t) = ord(H1(S3 \ νK; Λ)),
∆K(D)(t) = ord(H1(S4 \ νK(D); Λ)),

∆D(t) = ord(H1(D4 \ νD; Λ)).

Next we consider the following excerpt of the exact sequence of the pair

H2(D4 \ νD, S3 \ νK; Λ)
∂2−→ H1(S3 \ νK; Λ)

i∗−→ H1(D4 \ νD; Λ).

Since D is an embedded ribbon disk, the exterior of D has a description by 4-dimensional
handle attachments to the exterior of K that only uses 2- and 3-handles. Therefore the
map i∗ is an epimorphism. Using Poincaré duality, the Universal Coefficient Theorem and
the fact that the exterior of K and the boundary of the exterior of D have isomorphic
Alexander module structures, one sees that the left hand map is a monomorphism and
that ord(H2(D4 \ νD, S3 \ νK; Λ)) = ord(H1(D4 \ νD; Λ)) = ∆D(t−1). Next we recall the
following purely algebraic result: [Lev67, Lemma 5] say that given a short exact sequence
0 → A → B → C → 0 of finitely generated Λ-modules the order of the middle module
is the product of the orders of the outer modules. It follows from this discussion that
∆K(t) = f(t) · f(t−1) where f(t) = ∆D(t).

We now turn our attention to the main statement, namely that f(t) is in fact equal to
the Alexander polynomial of the double K(D). To this end, we express the 4-sphere S4

as a union of two 4-balls, S4 = D4
1 ∪ D4

2, and we denote by D1 ⊂ D4
1 and D2 ⊂ D4

2 two
copies of the embedded ribbon disk with K(D) = D1 ∪D2. This leads to the decomposition
S4 \νK(D) = (D4

1 \νD1)∪S3\νK (D4
2 \νD2). We consider the corresponding Mayer–Vietoris

sequence with Λ-coefficients:

H1(S3 \ νK; Λ)→ H1(D4
1 \ νD1; Λ)⊕H1(D4

2 \ νD2; Λ)→ H1(S4 \ νK(D); Λ)→ 0.

Since the inclusion induced maps H1(S3 \ νK; Λ) → H1(D4
i \ νDi; Λ) are the same as the

inclusion induced epimorphism H1(S3\νK; Λ)→ H1(D4\νD; Λ), we obtain from the above
long exact sequence that H1(D4 \ νD; Λ) ∼= H1(S4 \ νK(D); Λ).

We set f(t) := ∆K(D)(t) = ord(H1(S4 \ νK(D); Λ)). It follows from the above discussion

that ∆K(t) = ∆D(t) ·∆D(t−1) = f(t) · f(t−1). �

Yasuda proved the next theorem.

Theorem 3.2. [Yas18] Suppose K is a ribbon 2-knot bounding a ribbon D3 with r ribbon
intersections. Then there exists a representative f(t) = a0 +a1t+ · · ·+artr of the Alexander
polynomial of K such that

|ai| ≤
(
r

i

)
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for 0 ≤ i ≤ r.

Proof of Theorem 1.3. Suppose K bounds a ribbon disk D with r(K) = r ribbon inter-
sections. Then the double K(D) is a ribbon 2-knot bounding a ribbon D3 with r ribbon
intersections. By Theorem 3.2, there exists a representative f(t) of the Alexander polyno-
mial of K(D) whose coefficients satisfy the stated inequality, and by Lemma 3.1, we have
∆K(t) = f(t) · f(t−1), completing the proof. �

Proof of Corollary 1.4. Suppose K bounds a ribbon disk D with r(K) = n ribbon intersec-
tions. By Theorem 1.3, we can express ∆K(t) as f(t)·f(t−1), where f(t) = a0+a1t+· · ·+artr
and |ai| ≤

(
r
i

)
for all i. Observe that det(K) = |∆K(−1)| = |f(−1)|2. Now, we compute

|f(−1)| ≤ |a0|+ |a1|+ · · ·+ |ar| ≤
(
r

0

)
+

(
r

1

)
+ · · ·+

(
r

r

)
= 2r.

However, since det(K) is odd, |f(−1)| is also odd, and so |f(−1)| ≤ 2r − 1, completing the
proof. �

4. Ribbon codes and Alexander polynomials

In this section, we develop new machinery to better understand the possible Alexander
polynomials of ribbon knots. To each ribbon disk, we will associate a tree with marked
and labeled edges, called a ribbon code. Formally, a ribbon code is a tree Γ with n vertices
v1, . . . , vn, such that the union of the interiors of the edges in Γ contains a finite number
of distinguished points µ1, . . . , µr, called markings, with each marking µ` labeled with an
integer in the set {±1, . . . ,±n}.

Recall the definition of a disk-band presentation (D,B) for a ribbon diskD from Section 2.
Here we will also assume that a disk-band presentation is oriented, so that each disk in D
and each band in B has a positive normal direction that agrees with the positive normal
direction for the ribbon disk D. Suppose (D,B) is an oriented disk-band presentation, with
the disks in D labeled D1, . . . , Dn and the bands in B labeled B1, . . . , Bn−1. Construct a
graph Γ from (D,B) by associating a vertex vi to each disk Di and connecting two vertices
vi1 and vi2 with an edge ej if the corresponding band Bj has its two opposite boundary
edges in the disks Di1 and Di2 . Note that the homotopy type of Γ is the same as that of
D, and so Γ is a tree.

As we follow the band Bj from Di1 to Di2 , we add markings to the edge ej corresponding
to the ribbon intersections of Bj with the disks in D. If a marking µ` corresponds to a
ribbon intersection of Bj with the disk Dk, we label the marking ±k, with the sign decided
as follows: Each marking has a local direction, an arrow which points toward the component
of Γ \ µ` containing the vertex vk associated with Dk, and this induces a local direction of
the band Bj at the ribbon intersection with Dk. If the local direction on Bj agrees with the
positive normal orientation of Dk at the ribbon intersection, µ` is labeled +k. Otherwise,
the local direction of Bj disagrees with the orientation of Dk, and µ` is labeled −k. If
(D,B) is a disk-band presentation for a disk D with r ribbon intersections, and if Γ is the
corresponding ribbon code, Γ contains a total of r markings.

4.1. Some guiding examples. In Figure 8, we see disk-band presentations for the Steve-
dore knot 61 (at left) and the square knot 31#31 at right, along with their corresponding
ribbon codes. We have included the local direction at the markings for reference, but
the reader should note that this information is redundant, since the local directions are
determined uniquely by the labelings.
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B1
D1 D2

v1 v2

−2 1

1

B1
D1 D2

v1 v2

2 1

1

Figure 8. Ribbon codes induced by disk-band presentations for 31#31 (left)
and 61 (right).

In Figure 9, we see two disk-band presentations for two different knots that induce the
same ribbon code. In particular, the ribbon code is not affected by any homotopy of the
bands supported outside of a small neighborhood of the interior of the disks D. While such
a homotopy does not change the combinatorics of the ribbon intersections, we are allowed
to pass bands through each other, tie a local knot in a band, add full twists to a band, and
change the cyclic ordering along which multiple bands attach to a given disk.

B1

B2

B3

D1 D2

D3

D4

1

B1

B2

B3

D1 D2

D3

D4

1

v1 v2

v3

v4

13

2

1

Figure 9. Two disk-band presentations for different knots that induce the
same ribbon code

Remark 4.1. Although adding or deleting a full twist from a band does not change the
corresponding ribbon code, adding a half twist can alter the code significantly, due to the
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requirement that the disks and bands be consistently oriented. If a band is modified by a
half-twist, then the normal direction of one of the disks attached to the band must also be
changed, along with the normal direction of the bands attached to that disk, and so on.

We say that two ribbon codes Γ and Γ′ are isomorphic if there is a isomorphism ϕ : Γ→ Γ′

of the underlying graphs that induces an isomorphism of the markings in the following sense:
Let {v1, . . . , vn} and {v′1, . . . , v′n} denote the vertex sets of Γ and Γ′, respectively. Then ϕ
induces a permutation σ ∈ Sn by the rule σ(i) satisfies v′σ(i) = ϕ(vi). We also require ϕ

induces a bijection between the markings of Γ and Γ′, and if a marking µ` is labeled ±i,
then the marking ϕ(µ`) is labelled ±σ(i).

The proof of the next lemma is straightforward.

Lemma 4.2. For any fixed n, r > 0, there are finitely many possible ribbon codes with n
vertices and r markings (up to isomorphism).

4.2. Alexander polynomials from ribbon codes. What is perhaps less obvious is the
next lemma, which we will use to show that the Alexander polynomial of a ribbon knot K
can be computed directly from its ribbon code. To this end, suppose that Γ is a ribbon
code with r markings µ1, . . . , µr, and for each marking µ`, let sgn(µ`) = ±1 denote the sign
of its label ±i. In addition, define γ` ⊂ Γ to be the unique path in Γ from the vertex vi to
the marking µ`. Finally, define the `-th marking function g` : {1, . . . , r} \ {`} → {−1, 0, 1}
by

g`(m) =


sgn(µm) if µm ∈ γ` and the local direction at µm agrees with the direction of γ`

−sgn(µm) if µm ∈ γ`, the local direction at µm disagrees with the direction of γ`

0 if µm /∈ γ`.

Proposition 4.3. Suppose that K bounds a ribbon disk D with r ribbon intersections and
ribbon code Γ. Then K admits a 2r × 2r block Seifert matrix A of the form

A =

[
0 X
Y Z

]
such that the blocks X and Y are uniquely determined by Γ. In particular, the entries xm`
of X and ym` of Y are determined by the following rules:

(1) If m 6= `, then xm` = y`m = g`(m).
(2) If sgn(µ`) = 1, then x`` = 0 and y`` = −1.
(3) If sgn(µ`) = −1, then x`` = 1 and y`` = 0.

As a consequence, X − Y T = Id r.

Proof. Suppose (D,B) is a disk-band presentation for a ribbon disk D bounded by K that
gives rise to a ribbon code Γ, where D has r ribbon intersections. Let F be the Seifert
surface obtained by smoothing the ribbon intersections of D as in the proof of Lemma 2.3.
We will construct a basis for H1(F ) in order to find a Seifert matrix A.

Each ribbon intersection in D corresponds to two arcs a` and a′` in D, where a′` is properly
embedded and a` is embedded in int(D). Let N` denote a regular neighborhood of a` in D,
and let α` denote ∂N`, oriented counterclockwise with respect to the normal direction of D.
In addition, let A` be the annulus in F whose boundary consists of α` and another curve
made up of two arcs in K and two arcs in int(F ), as shown in Figure 10. By construction,
we have

F = D \
(⋃

N` ∪
⋃
a′`

)
∪
⋃
A`.



BOUNDING THE RIBBON NUMBERS OF KNOTS AND LINKS 13

In this way, we can view the α` curves in both D and in F , yielding half of the curves in
our basis of H1(F ). Since the disks N` are pairwise disjoint, lk(α`, α

+
m) = 0 for all ` and m,

and so the upper left block of A is the zero block.
As above, we denote the r markings of Γ by µ1, . . . , µr, where µ` is associated to the

ribbon intersection between a disk Di and a band Bj yielding arcs a` and a′` in D. Let b`
be an embedded path in D from a` to a′`, chosen so that b` avoids all other arcs of the form
am and crosses a′m at most once for m 6= `. Then b` corresponds to the path γ` in the tree
Γ from the vertex vi (associated to the disk Di) to the marking µ`, and the arcs a′m that b`
crosses correspond to the markings µm contained in γ`. Construct β` in F by starting with
the arc b` \ (

⋃
N` ∪

⋃
a′`) and connecting the endpoints in the annulus with an arc in A`,

as in Figures 10 and 11. By construction, |α` ∩ βm| = δ`m, and so {α1, . . . , αr, β1, . . . , βr}
is a basis for H1(F ).

bℓ
αℓ

αℓ

βℓ

Aℓ

aℓ

bℓ

a′ℓ

1

Figure 10. The interaction of α` and β` when sgn(µ`) = 1

bℓ
αℓ

αℓ

βℓ

Aℓ

aℓ

bℓ

a′ℓ

1

Figure 11. The interaction of α` and β` when sgn(µ`) = −1

We can use Figures 10 and 11 to compute lk(α`, β
+
` ) and lk(β`, α

+
` ). The case in which

sgn(µ`) = 1 is shown in Figure 10; we can verify

lk(α`, β
+
` ) = 0 and lk(β`, α

+
` ) = −1.

The case in which sgn(µ`) = −1 is shown in Figure 11; we have

lk(α`, β
+
` ) = 1 and lk(β`, α

+
` ) = 0.

For m 6= `, we have that lk(αm, β
+
` ) = lk(β`, α

+
m) 6= 0 if and only if β` passes through

the disk Nm, as in Figure 12. These intersections correspond precisely with the markings
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contained in the path γ`. Any such marking µm corresponds to the ribbon intersection
giving rise to Nm and αm, and we can see that

lk(αm, β
+
` ) = lk(β`, α

+
m) = ±1,

depending on whether the direction of b` and the normal direction at a′m agree (+1) or
disagree (−1). Note that sgn(µ`) indicates whether the local direction at am agrees or
disagrees with the normal direction at a′m. Thus, lk(αm, β

+
` ) = lk(β`, α

+
m) = 1 precisely

when the direction of γ` agrees with the local direction at µ` and sgn(µ`) = 1 or when
the direction of γ` disagrees with the local direction at µ` and sgn(µ`) = −1. Conversely,
lk(αm, β

+
` ) = lk(β`, α

+
m) = −1 precisely when the direction of γ` agrees with the local

direction at µ` and sgn(µ`) = −1 or when the direction of γ` disagrees with the local
direction at µ` and sgn(µ`) = 1. Succinctly,

lk(αm, β
+
` ) = lk(β`, α

+
m) = g`(m).

Noting that the (m, `)-th entry of the matrix X − Y T is given by lk(αm, β
+
` )− lk(β`, α

+
m),

we have X − Y T = Idr, completing the proof.

bℓ

αm

αm

βℓ

Am

am

bℓ

a′m

1

Figure 12. The interaction of αm and β` when the direction of b` agrees
with the normal direction at am

�

Remark 4.4. The ribbon code does not determine the block Z in Proposition 4.3 above.
This block, whose entries are of the form lk(βm, β

+
` ), is determined by the homotopy type

and twisting of the bands B away from a neighborhood of the ribbon intersections. Indeed,
although the X and Y blocks are the same in the Seifert matrices produced by the examples
shown in Figure 9, the Z blocks are quite different.

As a corollary, we obtain

Corollary 4.5. If K and K ′ are two ribbon knots with ribbon disks giving rise to isomorphic
ribbon codes, then ∆K = ∆K′.

Proof. Since K and K ′ induce the same ribbon code, it follows from Proposition 4.3 that
K and K ′ admit Seifert matrices A and A′, respectively, of the form

A =

[
0 X
Y Z

]
and A′ =

[
0 X ′

Y ′ Z ′

]
,

with X ′ = X and Y ′ = Y . We compute

∆K(t) = det(A− tAT ) =

∣∣∣∣ 0 X − tY T

Y − tXT Z − tZT
∣∣∣∣ .
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Since 0 commutes with Y − tXT , it follows from elementary linear algebra that∣∣∣∣ 0 X − tY T

Y − tXT Z − tZT
∣∣∣∣ = det(0·(Z−tZT )−(X−tY T )·(Y−tXT )) = det((X−tY T )(Y−tXT )).

An identical calculation shows that

∆K′(t) = det((X − tY T )(Y − tXT )).

�

Another nice application of Proposition 4.3 helps us understand knots with similar but
non-identical ribbon codes. Although this is not relevant to our later analysis, it may be of
independent interest for the future study of ribbon codes.

Corollary 4.6. Suppose ribbon knots K and K ′ bound disks with ribbon codes that are
identical except for the sign of a single marking. Then det(K) = det(K ′).

Proof. Suppose that K bounds a disk giving rise to Γ and K ′ bounds a disk giving rise to
Γ′, where Γ and Γ′ are identical except for corresponding markings µm and µ′m, which are
labeled +i in Γ and −i in Γ′ for some i ≥ 1. Then K and K ′ admit block Seifert matrices
A and A′, respectively, of the form

A =

[
0 X
Y Z

]
and A′ =

[
0 X ′

Y ′ Z ′

]
by Proposition 4.3, where Y T = X − Idr and (Y ′)T = X ′ − Idr. It follows that

det(K) = ∆K(−1) = det((X + Y T )(Y +XT )) = (det(X + Y T ))2.

Similarly, det(K ′) = (det(X ′ + (Y ′)T ))2. We prove the corollary by comparing the values
of xij + yji and x′ij + y′ji.

Let g` and g′` denote the marking functions corresponding to Γ and Γ′, respectively. Now,

observe that the only entries of the matrices X+Y T and X ′+(Y ′)T that depend on sgn(µm)
and sgn(µ′m) are the entries x`m + ym` and x′`m + y′m`, so that X + Y T and X ′ + (Y ′)T are
identical outside of their mth columns. Moreover, the local directions at µm and µ′m are
independent of their sign, and so for any ` 6= m, there are three possibilities:

(1) g`(m) = sgn(µm) and g′`(m) = sgn(µ′m) = −sgn(µm),
(2) g`(m) = −sgn(µm) and g′`(m) = −sgn(µ′m) = sgn(µm), or
(3) g`(m) = g′`(m) = 0.

In each of the three cases, we have x′`m = y′m` = −x`m = −y`m, and thus x′`m + y′m` =
−(x`m + ym`) whenever ` 6= m. On the other hand, if sgn(µm) = 1, then x`` = 0 and
y`` = −1, and sgn(µ′m) = −1, so that x′`` = 1 and y′`` = 0. Otherwise, sgn(µm) = −1, so
that x`` = 1 and y`` = 0, and sgn(µ′m) = 1, so that x′`` = 0 and y′`` = −1. In either case, we

again get x′`` + y′`` = −(x`` + y``). We conclude that the matrices X + Y T and X ′ + (Y ′)T

are identical except that the mth column of X ′+(Y ′)T has entries opposite the mth column
of X + Y T , and therefore det(X ′ + (Y ′)T ) = −det(X + Y T ), completing the proof. �

Remark 4.7. Eisermann noted in Remark 5.21 of [Eis09] so-called band crossing changes
do not have any effect on the Alexander polynomial, using an argument similar to the one
here. Other authors have also examined and discussed these ideas. In [KSTI21], the authors
also analyzed the Seifert surfaces and matrices arising from ribbon disks so that they could
obstruct knots from being simple-ribbon knots using Alexander polynomials. Their analysis
is similar to that appearing in the proof of Proposition 4.3. In [Bai21], the author used
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“ribbon diagrams” and “ribbon graphs” to compute Alexander polynomials. The work in
that paper is also similar (but not identical) to the proof of Proposition 4.3.

5. Classifying low-complexity ribbon codes and Alexander polynomials

In this section, we use ribbon codes to classify possible Alexander polynomials for ribbon
knots K with small ribbon numbers, which we will use in Section 6 to tabulate ribbon
numbers for knots with 11 or fewer crossings.

5.1. Simplification of ribbon codes. In order to determine all possible low-complexity
ribbon codes, we will use several tools to reduce certain configurations to simpler ones.
We define the fusion number F(Γ) of a ribbon code Γ to be the number of edges in the
graph Γ and the ribbon number r(Γ) to be the number of markings (noting that these
quantities coincide with the corresponding complexities of the ribbon disks they represent).
Additionally, by Corollary 4.5, a ribbon code uniquely determines an Alexander polynomial,
and so we let ∆Γ(t) or simply ∆Γ denote the Alexander polynomial determined by the
ribbon code Γ. For simplicity, we also use ∆K instead of ∆K(t) in this section. The
next five lemmas provide parameters which will allow us to narrow our search for possible
Alexander polynomials.

Lemma 5.1. Suppose Γ is a ribbon code such that an edge of Γ contains no markings.
Then there is a ribbon code Γ′ such that ∆Γ′ = ∆Γ, F(Γ′) < F(Γ), and r(Γ′) = r(Γ).

Proof. Let (D,B) be a disk-band presentation for a ribbon disk D giving rise to the ribbon
code Γ, where D = {D1, . . . , Dn} and B = {B1, . . . , Bn−1}. Possibly after reindexing,
suppose that the band Bn−1 corresponds to the edge e in Γ with no markings, and Bn−1 is
attached to disks Dn−1 and Dn. Since e contains no markings, the interior of Bn−1 is disjoint
from D. Let D′n−1 = Dn−1 ∪ Bn−1 ∪Dn. Then D′ = {D1, . . . , Dn−2, D

′
n−1} is a collection

of embedded disks. If in addition we let B′ = {B1, . . . , Bn−2}, we have that (D′, B′) is
a disk-band presentation for a ribbon disk D′ such that ∂D′ = ∂D, F(D′) < F(D), and
r(D′) = r(D′). We conclude that the ribbon code Γ′ for D′ satisfies ∆Γ′(t) = ∆Γ(t) and
F(Γ′) < F(Γ), as desired. �

Lemma 5.2. Suppose Γ is a ribbon code such that an edge of Γ contains consecutive
markings with labels i and −i. Then there is a ribbon code Γ′ such that ∆Γ′ = ∆Γ and
r(Γ′) < r(Γ).

Proof. Suppose ej is an edge of Γ with consecutive markings labeled i and −i. We can use
Γ to construct a disk-band presentation (D,B) for a ribbon disk D such that D gives rise
to Γ, and such that the band Bj corresponding to ej passes through the disk Di in opposite
directions as shown at left in Figure 13. In particular, we arrange the construction so that
there is an embedded disk E whose boundary is the endpoint union of an arc in Bj and
an arc in Di. We can use the disk E to build an isotopy of the band Bj that removes the
two opposite ribbon intersections, yielding a ribbon disk D′ such that ∂D′ is isotopic to ∂D
and r(D′) < r(D). Thus, the ribbon code Γ′ for D′ satisfies ∆Γ′ = ∆Γ and r(Γ′) < r(Γ), as
desired. �

Lemma 5.3. Suppose Γ is a ribbon code such that an edge incident to a vertex vi has
±i as its marking closest to vi. Then there is a ribbon code Γ′ such that ∆Γ′ = ∆Γ and
r(Γ′) < r(Γ).
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1

Figure 13. The local pictures described in Lemmas 5.2 and 5.3

Proof. Suppose ej is an edge of Γ incident to a vertex vi and the marking in ej closest to
vi is ±i. We can use Γ to construct a disk-band presentation (D,B) for a ribbon disk D
such that D gives rise to Γ, and such that the band Bj corresponding to ej is attached the
disk Di corresponding to the vertex vi immediately passes through Di as shown at right
in Figure 13. In particular, we arrange the construction so that there is an embedded disk
E whose boundary is the endpoint union of an arc in Bj and arc in Di and such that
E ∩ D = ∂E. We can use the disk E to build an isotopy of the band Bj that removes
the ribbon intersection, yielding a ribbon disk D′ such that ∂D′ is isotopic to ∂D and
r(D′) < r(D). As above, the corresponding ribbon code Γ′ for D′ satisfies ∆Γ′ = ∆Γ and
r(Γ′) < r(Γ). �

Remark 5.4. Note that Lemmas 5.2 and 5.3 imply that there exist disks D associated to
ribbon codes satisfying the hypotheses of the lemmas such that D can be simplified, but
this is not necessarily the case for all disks corresponding to these ribbon codes. Indeed, the
Kinoshita-Terasaka knot 11n42 shown in Figure 14 (adapted from Figure 2.7 of [CKS04])
bounds a disk D satisfying the hypotheses of Lemma 5.3; nevertheless r(11n42) = 3
by [Miz06] and so the ribbon number of this particular D cannot be reduced, even though
the corresponding ribbon code can be simplified.

1

Figure 14. A disk-band presentation for the Kinoshita-Terasaka knot 11n42

Lemma 5.5. Suppose Γ is a ribbon code containing a vertex vi of valence one such that Γ
contains no marking labeled ±i. Then there is a ribbon code Γ′ such that ∆Γ′(t) = ∆Γ(t),
F(Γ′) < F(Γ), and r(Γ′) ≤ r(Γ).

Proof. After relabeling if necessary, suppose that en−1 is the only edge incident to vn in Γ,
and that Γ contains no marking labeled ±n. As above, we can use Γ to construct a disk-
band presentation (D,B) for a ribbon disk D giving rise to Γ, where D = {D1, . . . , Dn},
B = {B1, . . . , Bn−1}, Dn corresponds to vn, and Bn−1 corresponds to en−1. Let D′ =
{D1, . . . , Dn−1} and B′ = {B1, . . . , Bn−2}. Then (D′, B′) is a disk-band presentation for
a ribbon disk D′. In addition, since Γ contains no marking labeled ±n, it follows that no
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band in B meets the disk Dn in its interior. Thus, Bn−1 ∪Dn is an embedded disk which is
disjoint from the bands in B′, and we can construct an isotopy of ∂D across this disk which
pushes one arc of ∂(Bn−1 ∪Dn) to the arc of ∂(

⋃
D′) along which the other end of Bn−1 is

attached. It follows that ∂D′ and ∂D are isotopic knots.
In addition, D′ has k ≥ 0 fewer ribbon intersections than D, where k is the number of

markings contained on the edge en−1. Hence the ribbon code Γ′ for D′ satisfies ∆Γ′ = ∆Γ,
F(Γ′) < F(Γ), and r(Γ′) ≤ r(Γ), as desired. �

Lemma 5.6. Suppose Γ is a ribbon code containing a vertex vi of valence two such that
Γ contains no marking labeled ±i. Then there is a ribbon code Γ′ such that ∆Γ′ = ∆Γ,
F(Γ′) < F(Γ), and r(Γ′) = r(Γ).

Proof. After relabeling if necessary, suppose en−2 and en−1 are the only edges incident to
the vertex vn, and no edge in Γ contains a marking labeled ±n. Use Γ to construct a disk-
band presentation (D,B) for a ribbon disk D giving rise to Γ, where D = {D1, . . . , Dn}
and B = {B1, . . . , Bn−1}, with indices corresponding as above. Since the marking ±n
does not appear in Γ, none of the bands in B meet Dn in its interior. Thus, if we let
B′n−2 = Bn−2 ∪Dn ∪ Bn−1, we have that B′n−2 is disjoint from the other bands in B and
shares two boundary arcs with arcs in ∂(

⋃
D), so we can view B′n−2 as a new band. Letting

D′ = {D1, . . . , Dn−1} and B′ = {B1, . . . , Bn−3, B
′
n−2}, we have that (D′, B′) is another

disk-band presentation for the same ribbon disk D. Therefore, the corresponding ribbon
code Γ′ satisfies ∆Γ′ = ∆Γ, F(Γ′) < F(Γ), and r(Γ′) = r(Γ). �

Remark 5.7. The conclusions of Lemmas 5.5 and 5.6 do not hold for vertices of Γ of valence
three or greater. For example, the ribbon code Γ shown in Figure 9 has no marking labeled
±4 corresponding to the vertex v4 of valence three, but Γ admits no obvious simplification.
This is not relevant to what follows, but we note that in this case, we can make a new
ribbon code Γ′ such that F(Γ′) < F(Γ) but such that r(Γ′) > r(Γ), similar to the process
shown in Figure 7.

The next lemma also helps to cut down the number of cases we consider in our analysis.

Lemma 5.8. Suppose Γ and Γ′ are ribbon codes with isomorphic underlying graphs but
such that every label of Γ′ is opposite that of Γ. Then ∆Γ = ∆Γ′.

Proof. In this case, we can use Γ and Γ′ to construct ribbon disks D and D′, respectively,
such that ∂D′ = ∂D. As mirror images have identical Alexander polynomials, the statement
follows immediately. �

Guided by the hypotheses of the above lemmas, we call a ribbon code Γ irreducible if

(1) Every edge of Γ contains at least one marking,
(2) No edge contains consecutive markings labeled i and −i,
(3) No marking closest to a vertex has the same label as that vertex, and
(4) Every vertex of valence one or two appears at least once as the label of some marking.

Otherwise Γ is called reducible.

Proposition 5.9. For any reducible ribbon code Γ, there exists an irreducible ribbon code Γ′

such that r(Γ′) ≤ r(Γ) and ∆Γ′ = ∆Γ.

Proof. If Γ is reducible, we may apply Lemma 5.1, 5.2, 5.3, 5.5, or 5.6 to produce the
desired Γ′. �

We have one final lemma that will aid in our search.
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Lemma 5.10. If Γ is an irreducible ribbon code, then

F(Γ) ≤ r(Γ).

Proof. If F(Γ) > r(Γ), then Γ contains more edges than markings, so at least one edge does
not contain a marking, and Γ is reducible. �

5.2. Enumerating possible Alexander polynomials for r = 2 and r = 3. For the
remainder, we set the convention that (unless otherwise specified) our ribbon disks are
oriented with the normal direction pointing out of the paper, as in Figures 8 and 9, and so
we omit the red normal vector in the figures below. For any nonnegative integer r, define
Rr to be the set of all possible Alexander polynomials of knots K such that r(K) ≤ r.
By definition, we have R0 ⊂ R1 ⊂ R2 ⊂ . . . , and by Theorem 1.3, we know Rr is finite.
Additionally, R0 = R1 = {1} (see Remark 2.6).

Proposition 5.11. R2 = {1,∆31#31
,∆61}.

Proof. Suppose that Γ satisfies r(Γ) = 2. By Proposition 5.9, we can suppose without
loss of generality that Γ is irreducible, in which case Lemma 5.10 implies that F(Γ) ≤ 2.
If F(Γ) = 2, then Γ has three vertices of valence one or two but only two markings, so
that at least one of these vertices does not appear as a label and Γ is reducible. It follows
that F(Γ) = 1, so that Γ has a two vertices v1 and v2 and a single edge e1 from v1 to v2.
Additionally, e1 contains two marking µ1 and µ2, in order. Since Γ is irreducible, it follows
that the corresponding markings satisfy x1 = ±2 and x2 = ±1. By Lemma 5.8, we may
suppose without loss of generality that x2 = 1, leaving us with two possible ribbon codes
Γ1 (in which x1 = 2) and Γ2 (in which x1 = −2). At right in Figure 8, we can see the
ribbon code Γ1, which gives rise to the knot 61, and at left in Figure 8, we see Γ2, yielding
31#31. �

Proposition 5.12. R3 = {1,∆31#31
,∆61 ,∆88 ,∆89 ,∆927 ,∆941 ,∆10137 ,∆10153 ,∆11n116}.

Proof. Suppose Γ satisfies r(Γ) = 3. By Proposition 5.9, we can suppose without loss of
generality that Γ is irreducible, in which case Lemma 5.10 implies that F(Γ) ≤ 3, so that
Γ has at most four vertices. We consider the cases F(Γ) = 1, F(Γ) = 2, and F(Γ) = 3
separately.

First, suppose F(Γ) = 1, so that Γ has two vertices v1 and v2, a single edge e1 from v1

to v2, and three markings µ1, µ2, µ3 in order with labels x1, x2, x3, respectively. Since Γ is
irreducible, we have x1 = ±2 and x3 = ±1, and by Lemma 5.8, we may suppose that x3 = 1.
Again using irreducibility, the possible markings are (x1, x2, x3) = (±2, 1, 1) or (x1, x2, x3) =
(±2,±2, 1), but using a graph isomorphism, the marking (x1, x2, x3) = (−2,−2, 1) yields
the same ribbon code as the marking (−2, 1, 1). Thus, we need only consider the cases
(x1, x2, x3) = (±2, 1, 1). In Figure 15, we see two ribbon disks which yield these two codes,
and their boundaries are 11n116 (with r = 0) and 10153, respectively.

Next, suppose F(Γ) = 2, so that Γ has three vertices v1, v2, and v3 and two edges
e1 (from v1 to v2) and e2 (from v2 to v3). After applying an isomorphism if necessary,
we may assume that e1 contains two markings µ1 and µ2 (in order) and e2 contains a
single marking µ3. Moreover, since Γ is irreducible, the corresponding labels must satisfy
(x1, x2, x3) = (±2,±3,±1), since each marking is the closest marking to one or two of
the vertices, and each label must appear exactly once. By Lemma 5.8, we may assume
that x3 = 1, and so the four possible labelings are (x1, x2, x3) = (±2,±3, 1). As shown in
Figure 16, these ribbon codes are induced by ribbon disks whose boundaries are the knots
89 (with r = 0), 88, 10137, and 10129, where ∆88 = ∆10129 .
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e1v1 v2

1 12

e1v1 v2

1 1−2

r

1

Figure 15. Disk-band presentations and corresponding ribbon codes for D
with ∂D = 11n116 (left, with r = 0) and 10153 (right).

e1 e2v1 v2 v3

12 3

r

e1 e2v1 v2 v3

1−2 3

e1 e2v1 v2 v3

12 −3

e1 e2v1 v2 v3

1−2 −3

1

Figure 16. Disk-band presentations and corresponding ribbon codes for D
with ∂D = 89 (top left, with r = 0), 88 (top right), 10137 (bottom left), and
10129 (bottom right).

Finally, suppose F(Γ) = 3, so that Γ has four vertices v1, v2, v3, and v4. Since some
vertex, say v4, does not appear as a marking, it must be the case that the valence of v4 is at
least three. It follows that the valence of v4 is exactly three, and the other three vertices have
valence one. Let e1, e2, and e3 be the edges of Γ, where ei connects vi and v4. Each edge ei
must contain one marking µi labeled xi, where the label xi is not equal to±i by irreducibility.
Up to isomorphism, the only possible labelings are (x1, x2, x3) = (±3,±1,±2). Up to
isomorphism and using Lemma 5.8, there are only two possibilities: Either all signs agree,
so (x1, x2, x3) = (3, 1, 2), or one sign differs from the other two, so (x1, x2, x3) = (3, 1,−2).
The two cases are shown at left and right in Figure 17, in which the ribbon disks have
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boundary 941 (with r = 0) and 927 (with r = s = t = 0), respectively. This exhausts all
possibilities for Γ, completing the proof.

r r s

t

e1 e2

e3

v1 v2

v3

v4
13

2

e1 e2

e3

v1 v2

v3

v4
13

−2

1

Figure 17. Disk-band presentations and corresponding ribbon codes for D
with ∂D = 941 (left, with r = 0) and 927 (right, with r = s = t = 0).

�

6. Tabulating ribbon numbers up to 11 crossings

In this section, we tabulate the ribbon numbers for ribbon knots in the knot table up to 11
crossings. Tables 1 and 2 include the knot name, Alexander polynomial, genus, determinant,
ribbon number, and justification for the upper and lower bounds for the ribbon numbers.
Except for the ribbon numbers, the data in the tables was retrieved from the KnotInfo
database [LM24]. For succinctness, we list ∆K as a tuple of coefficients, and we omit
coefficients implied by the symmetry of ∆k. For example, ∆61(t) = 2t−1 − 5 + 2t is written
as (2,−5) in the table.

One additional justification we need comes from a proposition of Mizuma and Tsutsumi
and uses the crosscap number γ(K) of K, the minimum nonorientable genus of a nonori-
entable surface bounded by K.

Proposition 6.1. [MT08] If K is a ribbon knot such that r(K) = 2, then either g(K) = 1
or γ(K) ≤ 2.

For the upper bounds, we typically use a known disk-band presentation or a known
symmetric union presentation in conjunction with Lemma 2.1. For instance, in the template
at left in Figure 15, the box labeled r represents some number of full twists on two strands,
and when r = −1, the corresponding knot is 11n49. In the template at top left in Figure 16,
the box labeled r also represents full twists and when r = 1, the corresponding knot is
11n37. In the templates in Figure 17, boxes labeled r, s, and t also represent full twists.
When r = −1 in the template at left, the corresponding knot is 11n83. In the template at
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right, when (r, s, t) = (−1, 0, 0), (0,−1, 0), or (0, 0, 1), the corresponding knots are 11n21,
11n4, or 11n172, respectively.

In Tables 1 and 2, the justification [Lam00] refers to the symmetric union presentations
depicted in Figure 16 of that paper. The justification [EL07] refers to Figure 3 (for the knot
1087) and Figure 4 (for the other knots in the table). The justification [Lam21] refers to
Table 2 (for the knots 11n67, 11n73, 11n74, and 11n97), Table 3 (for the knots 1099, 11a58,
11a103, 11a165, 11a201, 31#810, 31#811), or the Appendix (for the other knots in the table).
For the knots for which we have not determined the exact ribbon number, we give multiple
possibilities.

For the lower bound on the ribbon number of K ∈ {11n42, 11n67, 11n74, 11n97}, we used
KnotInfo [LM24] to verify that γ(K) > 2, and so Proposition 6.1 can be applied (note,
however, that we cited [Miz06] for 11n42, since historically that result appeared before
Proposition 6.1). The upper bounds for 1042, 1075, 1087, and 11n39 use the ribbon disks
shown in Figure 18, and the upper bounds for 11a28, 11a35, 11a36, 11a87, 11a96, 11a115,
11a169, and 11a316 are shown in Figure 19.

Table 1. Ribbon number data and justifications for knots up to 10 crossings

K ∆K det(K) g(K) r(K) lower upper

01 (1) 1 0 0
61 (2,−5) 9 1 2 Rmk. 2.6 Fig. 15

31#31 (1,−2, 3) 9 2 2 Prop. 2.9 Prop. 2.9
88 (2,−6, 9) 25 2 3 Prop. 5.11 Fig. 16
89 (1,−3, 5,−7) 25 2 3 Prop. 5.11 Fig. 16
820 (1,−2, 3) 9 2 2 Rmk. 2.6 [Lam00]

41#41 (1,−6, 11) 25 2 3 Prop. 5.11 Lem. 2.1
927 (1,−5, 11,−15) 49 3 3 Lem. 2.3 Fig. 17
941 (3,−12, 19) 49 2 3 Prop. 5.11 Fig. 9
946 (2,−5) 9 1 2 Rmk. 2.6 [Lam00]
103 (6,−13) 25 1 4 Prop. 5.12 [Lam00]
1022 (2,−6, 10,−13) 49 3 4 Prop. 5.12 [Lam00]
1035 (2,−12, 21) 49 2 4 Prop. 5.12 [Lam00]
1042 (1,−7, 19,−27) 81 3 4 Prop. 5.12 Fig. 18
1048 (1,−3, 6,−9, 11) 49 4 4 Lem. 2.3 [Lam00]
1075 (1,−7, 19,−27) 81 3 4 Prop. 5.12 Fig. 18
1087 (2,−9, 18,−23) 81 3 4 Prop. 5.12 Fig. 18
1099 (1,−4, 10,−16, 19) 81 4 4 Lem. 2.3 [Lam21]
10123 (1,−6, 15,−24, 29) 121 4 4, 5 Lem. 2.3 [Lam00]
10129 (2,−6, 9) 25 2 3 Prop. 5.11 Fig. 16
10137 (1,−6, 11) 25 2 3 Prop. 5.11 Fig. 16
10140 (1,−2, 3) 9 2 2 Rmk. 2.6 [Lam00]
10153 (1,−1, 1,−3) 1 3 3 Lem. 2.3 Fig. 15
10155 (1,−3, 5,−7) 25 3 3 Lem. 2.3 [Lam00]
51#51 (1,−2, 3,−4, 5) 25 4 4 Prop. 2.9 Prop. 2.9
52#52 (4,−12, 17) 49 2 4 Prop. 5.12 Lem. 2.1

Remark 6.2. The three ribbon disks in Figure 18 are adapted from Figure 3 of [KSTI21];
however, we note that figure has an error in the diagrams for 1042 and 1075. The corrected
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Table 2. Ribbon number data and justifications for knots with 11 crossings

K ∆K det(K) g(K) r(K) lower upper

11a28 (1,−6, 15,−24, 29) 121 4 4 Lem. 2.3 Fig. 19
11a35 (1,−5, 14,−25, 31) 121 4 4 Lem. 2.3 Fig. 19
11a36 (2,−12, 28,−37) 121 3 4 Prop. 5.12 Fig. 19
11a58 (2,−9, 18,−23) 81 3 4 Prop. 5.12 [Lam21]
11a87 (2,−11, 28,−39) 121 3 4 Prop. 5.12 Fig. 19
11a96 (1,−9, 29,−43) 121 3 4 Prop. 5.12 Fig. 19
11a103 (4,−20, 33) 81 2 4 Prop. 5.12 [Lam21]
11a115 (3,−13, 27,−35) 121 3 4 Prop. 5.12 Fig. 19
11a164 (1,−7, 20,−35, 43) 169 4 4, 5, 6 Lem. 2.3 [Lam21]
11a165 (2,−9, 18,−23) 81 3 4 Prop. 5.12 [Lam21]
11a169 (2,−12, 28,−37) 121 3 4 Prop. 5.12 Fig. 19
11a201 (4,−20, 33) 81 2 4 Prop. 5.12 [Lam21]
11a316 (1,−5, 14,−25, 31) 121 4 4 Lem. 2.3 Fig. 19
11a326 (1,−6, 19,−36, 45) 169 4 4, 5, 6 Lem. 2.3 [Lam21]
11n4 (1,−5, 11,−15) 49 3 3 Lem. 2.3 Fig. 17
11n21 (1,−5, 11,−15) 49 3 3 Lem. 2.3 Fig. 17
11n37 (1,−3, 5,−7) 25 3 3 Lem. 2.3 Fig. 16
11n39 (2,−6, 9) 25 2 3 Prop. 5.11 Fig. 18
11n42 (1) 1 2 3 [Miz06] [Miz06]
11n49 (1, 0,−3) 1 2 3 Prop. 5.11 Fig 15
11n50 (2,−6, 9) 25 2 3 Prop. 5.11 [Lam21]
11n67 (2,−5) 9 2 3 Prop. 6.1 [Lam21]
11n73 (1,−2, 3) 9 3 3 Lem. 2.3 [Lam21]
11n74 (1,−2, 3) 9 2 3 Prop. 6.1 [Lam21]
11n83 (3,−12, 19) 49 2 3 Prop. 5.11 Fig. 17
11n97 (2,−5) 9 2 3 Prop. 6.1 [Lam21]
11n116 (1, 0,−3) 1 2 3 Prop. 5.11 Fig. 15
11n132 (2,−6, 9) 25 2 3 Prop. 5.11 [Lam21]
11n139 (2,−5) 9 1 2 Rmk. 2.6 [Lam21]
11n172 (1,−5, 11,−15) 49 3 3 Lem. 2.3 Fig. 17
31#810 (1,−4, 10,−16, 19) 81 4 4 Lem. 2.3 [Lam21]
31#811 (2,−9, 18,−23) 81 3 4 Prop. 5.12 [Lam21]

versions were graciously shared with us by the authors via an email exchange, and we used
these to construct the presentations in Figure 18.

7. Jones determinants and ribbon numbers

A natural question arising from the work above is the following.

Question 7.1. To what extent do these results hold for ribbon links?

In the penultimate section, we prove an extension of Corollary 1.4 to links, stated above
as Theorem 1.6, which replaces the knot determinant with a link invariant called the Jones
determinant introduced by Eisermann in [Eis09].
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1

(a) 1042

1

(b) 1075

1

(c) 1087

1

(d) 11n39

Figure 18. Ribbon disks realizing minimal ribbon numbers, where (A),
(B), and (C) are adapted from Figure 3 of [KSTI21]; see Remark 6.2.

A ribbon surface for a link L ⊂ S3 is a possibly disconnected, possibly nonorientable,
immersed surface S ⊂ S3 such that

(1) ∂S = L,
(2) S has only ribbon self-intersections, and
(3) S has no closed components.

As with a ribbon disk D, we define the ribbon number r(S) to be the total number of
ribbon intersections contained in S. An n-component ribbon link L bounds a collection
D of n ribbon disks (which can intersect each other in ribbon singularities). The ribbon
number r(L) of L is the minimum of r(D) taken over all sets of ribbon disks D bounded
by L.

For a diagram D corresponding to a link L, we let 〈D〉 denote the well-known Kauffman
bracket polynomial in the variable A, in which case the Jones polynomial VL(q) satisfies

(1) VL(q) = (−A)−3w(D)〈D〉
where w(D) is the writhe of D, and using the substitution q = −A−2 (alternatively, VL(t)

uses the substitution t = q2 or t = A−4). Evaluating VL at q = i (or A = e−iπ/4), we have

det(L) = |VL(i)| = |(eπi/4)−3w(D)〈D〉A=e−iπ/4 | = |〈D〉A=e−iπ/4 |.
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1

(a) 11a28

1

(b) 11a35

1

(c) 11a36

1

(d) 11a87

1

(e) 11a96

1

(f) 11a115

1

(g) 11a169

1

(h) 11a316

Figure 19. Ribbon disks realizing minimal ribbon numbers

Eisermann proved the following.

Theorem 7.2. [Eis09] Suppose L bounds a ribbon surface S such that χ(S) = n > 0. Then
VL(q) is divisible by the Jones polynomial of the n-component unlink, (q + q−1)n−1.
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By combining the theorem with Equation 1, we get the following corollary.

Corollary 7.3. Suppose L bounds a ribbon surface S such that χ(S) = n > 0, and let D
be a diagram for L. Then 〈D〉 is divisible by (−A−2 −A2)n−1.

As another consequence of the theorem, motivated by expression for the determinant
above, Eisermann defined the Jones determinant detn(VL) of a link L bounding a ribbon
surface S with χ(S) = n,

detn(VL) =

(
VL(q)

(q + q−1)n−1

)
q=i

.

When K is a ribbon knot, we have det(K) = |det1(VK)|. As a part of the proof of The-
orem 7.2, Eisermann computed the difference of the Kauffman bracket for ribbon links
related by the local move shown in Figure 5. He proved

Lemma 7.4. [Eis09] Suppose L is a link bounding a ribbon surface of Euler characteristic
n with ribbon number k > 0. Then there exists a diagram D for L, diagrams Dn

0 , Dn
1 ,

Dn
2 , Dn

3 , and Dn
4 for links Lni bounding ribbon surfaces of Euler characteristic n and ribbon

number k − 1 and diagrams Dn+1
1 and Dn+1

2 for links Ln+1
i bounding ribbon surfaces of

Euler characteristic n+ 1 such that

〈D〉 − 〈Dn
0 〉 = (A2 −A−2)

(
〈Dn+1

1 〉 − 〈Dn+1
2 〉

)
+ (A4 − 1) (〈Dn

1 〉 − 〈Dn
2 〉)

+ (A−4 − 1) (〈Dn
3 〉 − 〈Dn

4 〉) .

Proof. If L bounds a ribbon surface of Euler characteristic n and ribbon number k, there
is a diagram of L locally identical to the left frame of Figure 5. The equation above then
agrees with Equation (7) from [Eis09]. �

Lemma 7.4 is a key ingredient in the proof of the next theorem, which specializes to
Theorem 1.6 when L is a ribbon link.

Theorem 7.5. Suppose L is a link bounding a ribbon surface of Euler characteristic n > 0
with ribbon number k ≥ 0. Then

|detn(VL)| ≤ 9k.

Proof. Let ω = e−iπ/4. Using the definition of the Jones determinant along with Equation 1
and the substitution q = −A−2, we have that for any diagram D for L,

(2) |detn(VL)| =

∣∣∣∣∣ VL(q)

(q + q−1)n−1
q=i

∣∣∣∣∣ =

∣∣∣∣∣ (−A)−3w(D)〈D〉
(−A−2 −A2)n−1

A=ω

∣∣∣∣∣ =

∣∣∣∣ 〈D〉
(−A−2 −A2)n−1

A=ω

∣∣∣∣ .
We induct on the ribbon number k of the surface, call it S. For the base case, suppose
that k = 0. Since χ(S) = n, it follows that S has at least n disk components (since the
maximal Euler characteristic of each component of S is one). By assumption, k = 0; hence,
S is embedded and L is the split union of an n-component unlink U and another (possibly
empty) link L′. Let D = D′ tD′′ be a split diagram in which D′ is a crossingless diagram
for U . If L′ is the empty link, then

|detn(VL)| =
∣∣∣∣ 〈D′〉
(−A−2 −A2)n−1

A=ω

∣∣∣∣ =

∣∣∣∣(−A−2 −A2)n−1

(−A−2 −A2)n−1
A=ω

∣∣∣∣ = 1.

If L′ is not the empty link, then

|detn(VL)| =
∣∣∣∣ 〈D〉
(−A−2 −A2)n−1

A=ω

∣∣∣∣ =

∣∣∣∣(−A−2 −A2)n〈D′′〉
(−A−2 −A2)n−1

A=ω

∣∣∣∣ = 0.
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In either case, |detn(VL)| ≤ 90.
Now, suppose that the inequality holds for any link bounding a ribbon surface of Euler

characteristic n > 0 and with ribbon number k − 1. Then there are links and diagrams
labeled and yielding the skein identity as in Lemma 7.4. Corollary 7.3 implies that (−A−2−
A2)n divides 〈Dn+1

i 〉, which means that −A−2 − A2 is a factor of
〈Dn+1

i 〉
(−A−2−A2)n−1 . It follows

that ∣∣∣∣ 〈Dn+1
i 〉

(−A−2 −A2)n−1
A=ω

∣∣∣∣ = 0.

If we rewrite the equation from Lemma 7.4 by dividing by (−A−2 −A2)n−1 and evaluating
at A = ω, we get

〈D〉
(−A−2 −A2)n−1

A=ω

=
〈Dn

0 〉
(−A−2 −A2)n−1

A=ω

− 2〈Dn
1 〉

(−A−2 −A2)n−1
A=ω

+
2〈Dn

2 〉
(−A−2 −A2)n−1

A=ω

− 2〈Dn
3 〉

(−A−2 −A2)n−1
A=ω

+
2〈Dn

4 〉
(−A−2 −A2)n−1

A=ω

.

Taking absolute values, using Equation 2, and applying the triangle inequality yields

|detn(VL)| ≤ |detn(VLn0 )|+ 2|detn(VLn1 )|+ 2|detn(VLn2 )|+ 2|detn(VLn3 )|+ 2|detn(VLn4 )|.
Finally, we note that the corresponding links Lni bound ribbon surfaces with Euler charac-
teristic n and k − 1 ribbon intersections, and as such we can use our inductive hypothesis
to conclude

|detn(VL)| ≤ 9k−1 + 2 · 9k−1 + 2 · 9k−1 + 2 · 9k−1 + 2 · 9k−1 = 9k.

�

8. Questions and conjectures

In this section, we include several interesting avenues of investigation for future research.
The first involves the behavior of ribbon knots under connected sums. If K1 and K2 are
ribbon knots, we can take the connected sum of disks that minimize r(Ki) to show that
r(K1#K2) is at most r(K1) + r(K2), but it is unknown whether equality holds in general.

Conjecture 8.1. If K1 and K2 are ribbon knots, then

r(K1#K2) = r(K1) + r(K2).

We note that by Lemma 2.3 and the additivity of genus under connected sum, the con-
jecture holds for any ribbon knots K1 and K2 that satisfy g(Ki) = r(Ki). For instance, it
holds for the knots Tp,q#Tp,q discussed in Proposition 2.9.

We can also consider for which knots the inequality in Lemma 2.1 is an equality. We
conjecture

Conjecture 8.2. If K is a non-ribbon alternating knot, then

r(K#K) = c(K)− 1.

Note that this conjecture is not true for ribbon knots, since r(61) = 2 and the above
argument implies that r(61#61) ≤ 4. Based on our data, however, we know that the
conjecture holds for the knots 31, 41, 51, 52, and any torus knot of the form Tp,2.
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Question 8.3. Given the usefulness of Alexander polynomials in our computations, can
more sophisticated tools such as knot Floer homology give effective lower bounds on ribbon
numbers?

We can also consider further investigation of ribbon numbers of links:

Question 8.4. How sharp is the bound |detn(VL)| ≤ 9r(L) for ribbon links given by Theo-
rem 1.6?

For ribbon knots, Corollary 1.4 states a stronger result, which appears to be sharp for
low ribbon numbers based on our data. Can the exponent of 9 in Theorem 1.6 be replaced
with something smaller?

Question 8.5. Is there a prescriptive formula for computing (some elements of) Rr for
larger values of r?

Forthcoming work [ABC+] computes R4 (by exhaustion, as in Propositions 5.11 and 5.12
above) and applies the computation to find ribbon numbers for many 12-crossing ribbon
knots. With more data, patterns in the elements of Rr may begin to emerge.
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