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Abstract. For every genus g > 2, we construct an infinite family
of strongly quasipositive fibred knots Kn having the same Seifert
form as the torus knot T (2, 2g+1). In particular, their homological
monodromies agree and their signatures and four-genera are maxi-
mal: |σ(Kn)| = 2g4(Kn) = 2g. On the other hand, the geometric
stretching factors are pairwise distinct and the knots are pairwise
not ribbon concordant.

1. Introduction and summary of results

Strongly quasipositive fibred links arise as particular intersections of
complex plane curves with the unit sphere S3 ⊂ C2. Examples include
the classical links of plane curve singularities (among which are the
torus links T (n,m) for positive n,m), but many more links such as
closures of positive braids fall into this family.

A recent note by Baker [4] draws attention to this rich albeit very
special family of links, in the context of knot concordance. Two knots
K0, K1 ⊂ S3 are said to be concordant if there exists a smooth embed-
ding A : S1 × [0, 1] ↪→ S3 × [0, 1] such that A(S1 × {i}) = Ki × {i},
i = 0, 1. Knots in S3 = ∂B4 which are concordant to the unknot
are called slice. They are given by slicing the four-ball B4 along a
disc (obtained by capping off the unknotted boundary component of a
concordance annulus). A slicing disc (D2, ∂D2) ⊂ (B4, S3) is called a
ribbon disc, if the distance function to 0 ∈ B4 is a Morse function on D2

without interior local maxima. Accordingly, knots bounding a ribbon
disc are called ribbon. The still unsettled slice-ribbon question posed by
Fox in the 60s is whether every slice knot is ribbon [15]. Baker proved
that two strongly quasipositive fibred knots K0, K1 must be equal if
K0#(−K1) is a ribbon knot [4]. In view of Fox’s question, Baker’s ob-
servation leads to two equally intriguing alternative statements: either
there exists a fibred knot of the form K0#(−K1) which is slice but not
ribbon, or every knot concordance class contains at most one strongly
quasipositive fibred knot.
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We describe a simple and general construction proposed by Baader
(compare [1]), which gives rise to infinite families of strongly quasi-
positive fibred knots having the same Seifert form. In particular, classi-
cal knot concordance invariants whose definition is based on the Seifert
form, such as the Levine-Tristram signatures, fail to distinguish these
knots. As a special case in which it is relatively easy to study the
constructed knots in some detail, we obtain the following theorem.

Theorem 1. Let g > 2. There exists an infinite family of (pairwise
nonisotopic) genus g knots Kn ⊂ S3, n ∈ N, such that for all n ∈ N

(1) Kn is strongly quasipositive, fibred and hyperbolic,
(2) Kn has the same Seifert form as the torus knot T (2, 2g + 1).

To distinguish the constructed knots, we study their monodromies,
which turn out to be pseudo-Anosov, and compare their geometric
stretching factors. The following corollary is an immediate conse-
quence.

Corollary 1. Let g > 2. There exist infinitely many hyperbolic strongly
quasipositive fibred knots of genus g, having

(1) maximal signature,
(2) periodic homological monodromy,
(3) isomorphic Alexander modules.

Families of fibred knots with equal Seifert forms have been studied
before in connection with (ribbon) concordance. For example, Bonahon
used Stallings twists to construct a family of fibred genus two knots Kn,
n ∈ N, whose homological monodromies are pairwise conjugate and
such that Kn#(−Km) is not a ribbon knot for n 6= m (compare [9], see
also [10]). However, these knots are not strongly quasipositive. In fact,
a quasipositive surface cannot contain an essential zero-framed annulus
[36], which is required for a Stallings twist. To prove that the knots
Kn#(−Km) are not ribbon, Bonahon applied the following criterion of
Casson and Gordon [11, Theorem 5.1].

A fibred knot in a homology 3-sphere is homotopically ribbon if and
only if its closed monodromy extends over a handlebody.

The notion of a knot being homotopically ribbon is a weakened ver-
sion of ribbonness introduced by Casson and Gordon. If S is a compact
orientable surface with boundary, a diffeomorphism ϕ : S → S (fixing
the boundary of S pointwise) is said to extend over a handlebody if
and only if there exists a three-dimensional handlebody W such that
S ⊂ ∂W , ∂W \ S is a union of discs, and ϕ is the restriction of a
diffeomorphism of W .
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Proposition 1. Let Kn, n ∈ N, be the family of knots constructed in
the proof of Theorem 1. The following holds for all i, j ∈ N, i 6= j.

(1) Ki and Kj are not ribbon concordant,
(2) Ki and Kj are not homotopy ribbon concordant,
(3) the closed monodromy of Ki#(−Kj) does not extend over a

handlebody,
(4) the smooth four-ball genus of Ki#(−Kj) is at most one.

Besides their implication in the slice-ribbon problem, strongly quasi-
positive fibred links also appear in the context of the L-space conjecture
due to Boyer, Gordon and Watson [7]. L-spaces are 3-manifolds with
minimal Heegaard Floer homology, including lens spaces as particular
examples. The L-space conjecture suggests that L-spaces are exactly
those irreducible Q-homology spheres whose fundamental groups do
not support any left-invariant strict total order. Knots which admit a
Dehn surgery to an L-space are called L-space knots. By combined work
of Hedden, Ghiggini, Ni and Ozsváth and Szabó, all L-space knots are
known to be strongly quasipositive and fibred (see [19, Theorem 1.2],
[17], [26, Corollary 1.3], [27] and [29, Corollary 1.6]). Boileau, Boyer
and Gordon recently studied knots which give rise to L-spaces both by
Dehn surgery and by taking a cyclic branched covering [6]. They de-
duce strong restrictions on such knots: the signature must be maximal
and the Alexander polynomial is a product of cyclotomic polynomials.
Further they show that the degree of an L-space branched covering of
such a knot is at most five. If it is four or five, the knot must be the
trefoil; if it is three, the knot is either the trefoil, the T (2, 5) torus knot
or a hyperbolic knot with the same Alexander polynomial as T (2, 5)
(see [6, Corollary 1.4]). This leads naturally to the following question.

Question. Are any of the knots Kn, n 6= 0, constructed in the proof of
Theorem 1 L-space knots? Are any of the associated double or triple
branched covers L-spaces (for g = 2)?

In a project with Gilberto Spano we address the first part of this
question and show that none of the knots Kn, n 6= 0, is an L-space
knot [24].

2. Preliminaries

2.1. Knots, links, Seifert surfaces and Seifert forms. By a knot
we understand an oriented smoothly embedded circle in the three-
dimensional sphere S3, considered up to ambient isotopy. Similarly, a
link is a disjoint union of several oriented circles embedded in S3, con-
sidered up to ambient isotopy. Given a link L, a Seifert surface for L is
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a compact connected oriented embedded surface S ⊂ S3 whose bound-
ary (with the induced orientation) is L. Just as for knots and links,
Seifert surfaces related by an ambient isotopy are considered equiva-
lent. The genus of a knot, denoted g(K), is the smallest genus of all
Seifert surfaces for L. Similarly, the smooth four-genus, or slice genus,
g4(K) is the smallest genus of a smooth, compact, properly embedded
surface in the four-ball B4 which bounds K. Since the interior of any
Seifert surface in S3 = ∂B4 can be pushed inside B4, the inequality
g4(K) 6 g(K) holds for every knot K.

The Seifert form of a Seifert surface S is a bilinear form

V : H1(S,Z)×H1(S,Z)→ Z.

On homology classes a, b ∈ H1(S,Z) of oriented simple closed curves
α, β ⊂ S, the value of V is defined to be V (a, b) = lk(α, β+), where
the curve β+ ∈ S3 \ S is obtained by pushing β slightly off S in the
positive normal direction given by the orientation of S, and lk denotes
the linking number of a pair of disjoint oriented knots in S3. This is
well-defined and determines V by linear extension to H1(S,Z).

The signature of a knot K, denoted σ(K), is defined as the num-
ber of positive eigenvalues minus the number of negative eigenvalues of
V + V >, where V is the Seifert form of a Seifert surface S for K. It
is independent of the choice of S. The signature descends to a group
homomorphism from the knot concordance group (knots modulo con-
cordance with connected sum as group multiplication) to the integers.
Its absolute value gives a lower bound on twice the slice genus of a knot:
|σ(K)| 6 2g4(K) for every knot K (see [25, Theorem 9.1]). A knot K
is said to have maximal signature if |σ(K)| = 2g4(K) = 2g(K).

2.2. Fibred links, Hopf plumbing and monodromy. A link L is
fibred if its complement S3 \ L has the structure of a surface bundle
over S1 such that each fiber is the interior of a Seifert surface for L.
Seifert surfaces arising as the fibres of such fibrations are called fibre
surfaces. They come with a characteristic mapping class called the
monodromy, whose mapping torus gives back the fibre bundle. Once
the embedding of a fibre surface into S3 is fixed, its monodromy map
is determined up to isotopy; without specifying the embedding, it is
well-defined up to isotopy and conjugacy. Since a fibred link has a
unique Seifert surface of minimal genus and fibre surfaces are minimal
genus surfaces [38, Proposition 2.19] (see also [12, Lemma 5.1]), there
is a bijective correspondence between fibre surfaces and fibred links.
Note that monodromy maps are subject to Nielsen and Thurston’s
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classification of surface mapping classes into periodic, pseudo-Anosov
and reducible mapping classes [42, 14].

Examples of fibred links prominently appear in singularity theory
as transverse intersections of an algebraic curve C ⊂ C2 with a small
sphere centered at an isolated singular point [23]. These include the
torus links T (n,m) for n,m ∈ N, given by the singularity at (0, 0) of
the curve {(x, y) ∈ C2 | xn − ym = 0}. The monodromy of a torus
link is a periodic mapping class (see for example [23, Lemma 9.4]). In
the simplest non-trivial case T (2, 2), the corresponding fibre surface is
a so-called Hopf band, an embedded annulus with one full twist.

Given a fibre surface S and a Hopf band H which are contained
in disjoint balls and thus unlinked in S3, and a properly embedded
interval γ ⊂ S, we can glue H to S along γ to obtain a new Seifert
surface S ∗γ H. On the level of abstract (non-embedded) surfaces, this
corresponds to a 1-handle attachment along ∂γ to S. The resulting
Seifert surface S ∗γ H is said to be obtained by plumbing H onto S
along γ. It was observed by Stallings [40] that this surface is again a
fibre surface, and its monodromy is the composition of the monodromy
of S (extended to S ∗γ H by the identity) with a positive Dehn twist
along the core circle of H. Torus link fibre surfaces are instances of
fibre surfaces which can be obtained from a disc by iterated plumbing of
Hopf bands. For example the fibre surface of the torus link T (2, n+ 1),
n ∈ N, is obtained by plumbing n Hopf bands in such a way that the
intersection graph of their core circles is the line graph
with n vertices.

2.3. Strongly quasipositive links. Quasipositive and strongly quasi-
positive braids and links were introduced and studied by Rudolph [34].

A link L ⊂ S3 is quasipositive if and only if it can be obtained
as transverse intersection of a complex algebraic curve with the unit
sphere S3 ⊂ C2, a result by Boileau and Orevkov [8] and Rudolph [32].
In terms of braids, quasipositive links are represented by products of
conjugates of the positive standard generators σ1, σ2, . . . of the braid
group: L is quasipositive if there exists a braid β of the form

β =
d∏
i=1

wiσni
w−1i ,

for some d, n1, . . . , nd ∈ N, where the wi are elements of the braid
group, such that L is obtained by standard braid closure of β. If in
addition each conjugating word wi has the particular form

wi = σni−k · · ·σni−1,
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for some k (depending on i), the braid β and its closure are called
strongly quasipositive. Strongly quasipositive links generalise links of
singularities, positive braid closures, and positive links [35]. They are
characterised as the boundaries of incompressible subsurfaces of posi-
tive torus link fibres [33], form a rather large class of links representing
every possible Seifert form [31, §3] and behave naturally with respect
to fibredness: connected sum, plumbing and positive cabling preserve
strong quasipositivity [34, 20].

2.4. Dilatation of pseudo-Anosov multi-twists. We briefly review
a classical construction due to Thurston [42] (see also [14, Exposé 13,
§III]) which allows to compute the dilatation of a surface mapping
class which is given by two multi-twists. It will be used to estimate
the dilatation of the monodromies to be constructed in the proof of
Theorem 1.

Let S be a compact connected oriented surface. A multi-curve is a
finite union of pairwise disjoint essential simple closed curves in S. Let
α = α1∪̇ · · · ∪̇αn and β = β1∪̇ · · · ∪̇βm be two multi-curves with the
following properties.

• α and β intersect transversely,
• their union α ∪ β is connected,
• α and β are tight, that is, the number of intersections between
αi and βj (counted without sign) is minimal among all pairs of
curves respectively isotopic to αi and βj, for all i, j,
• α and β fill up S, that is, S \ (α ∪ β) consists of discs and

boundary parallel annuli.

Let ϕ : S → S be given as the composition of right Dehn twists
along the curves αi, followed by right Dehn twists along the curves βj:

ϕ = tβm ◦ · · · ◦ tβ1 ◦ tαn ◦ · · · ◦ tα1 .

View the surface S as a union of Euclidean rectangular charts of the
form Rp

∼= [0, wj] × [0, hi] ⊂ R2, one for each p ∈ αi ∩ βj, for all i, j,
whose horizontal and vertical axes [0, wj] × {12hi} and {1

2
wj} × [0, hi]

correspond to the intersection of Rp ⊂ S with αi and βj, respectively.
The widths and heights wj, hi are chosen such that the rectangles fit
nicely together along their sides to form annular neighbourhoods of the
α- and β-curves. With respect to the charts Rp, the Dehn twists tαi

and tβj are given by linear shearing maps. The last step consists in
choosing the wj and hi carefully, such that the amount of shearing is
the same on every rectangle. To this end, consider the n×m matrix N
whose entry Nij is the geometric intersection number of αi and βj. The
connectedness of α ∪ β implies that some power of the matrix NN>
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has strictly positive entries. Therefore, NN> has an eigenvector h with
strictly positive entries for the Perron-Frobenius eigenvalue µ > 0:
NN>h = µh. The vector w = µ−

1
2N>h is then an eigenvector of

N>N to the same eigenvalue: N>Nw = µw. In choosing the widths
and heights of the Rp as the components of w and h, respectively, it
is achieved that the neighbourhood

⋃
p∈αi∩β Rp of αi is a cylinder of

height hi and circumference∑
{(p,j) | p∈αi∩βj}

wj = (Nw)i = µ−
1
2 (NN>h)i = µ

1
2hi.

Therefore, the matrices of the Dehn twists tαi
and tβj , written in the

standard basis of R2 ⊃ Rp, do not depend on i, j:

Tα =

[
1 µ1/2

0 1

]
, Tβ =

[
1 0
−µ1/2 1

]
Thus, ϕ restricts on each Rp to the linear map Tβ◦Tα, whose eigendirec-
tions define two transverse invariant foliations on S with singularities
at the corners of the rectangles Rp and whose eigenvalues λ±1 are the
stretching factors of ϕ.

3. Families of fibred knots

We first describe an explicit construction of a family of knots Kn,
n ∈ N, having the properties stated in Theorem 1. To prove that
the knots are indeed pairwise nonisotopic, we compute the geometric
dilatation λn ∈ R of the monodromy of Kn. For this purpose, we choose
the construction in such a way that the monodromy is represented by
a composition of two multi-twists, that is, products of Dehn twists on
sets of disjoint curves.

Proof of Theorem 1 – Construction of the knots Kn. Let S ⊂ S3 be
the fibre surface of the T (2, 2g) torus link, viewed as a plumbing of 2g−1
positive Hopf bands H1, . . . , H2g−1 according to the tree .
We choose the plumbing order as follows. First let S ′ = H1# · · ·#Hg

be the connected sum of the first g bands. The monodromy of S ′ is
a composition of positive Dehn twists along g pairwise disjoint simple
closed curves, namely the core curves α1, . . . , αg of H1, . . . , Hg. Denote
β1, . . . , βg−1 the cores of the remaining Hopf bands Hg+1, . . . , H2g−1,
respectively. The latter may now be plumbed to S ′ from below such
that α1, β1, α2, β2, . . . , αg−1, βg−1, αg form a chain, that is, βi intersects
each of its neighbours αi and αi+1 transversely in one point (for all
i = 1, . . . , g − 1), and there are no other intersections (see Figure 1).
Denote S the resulting surface, which is indeed the fibre surface of
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α1

β1

α2

β2

· · ·

αg−1 αg

βg−1

γ

Figure 1. The fibre surface S of the torus link T (2, 2g)
and core curves of the plumbed Hopf bands.

T (2, 2g). Now let γ ⊂ H2g−1 ⊂ S be a proper arc which intersects αg
transversely in one point and does not intersect any of the other curves.
Further let c ⊂ S be the boundary of a (small) regular neighbourhood
of αg ∪ βg−1 in S and denote tc the positive Dehn twist on c. Note
that tc acts as the identity on homology since c is nullhomologous in
S, by construction (see Figure 2). For n ∈ N, define the proper arc

γ

α2

S

β1

c

α1

Figure 2. Position of the curves in the abstract surface
S for g = 2.

γn = tnc (γ). Finally, let Sn be the surface obtained by plumbing a pos-
itive Hopf band H2g along γn to S from below and denote βg,n the core
curve of H2g in Sn. The monodromy ϕn : Sn → Sn is given by

ϕn = (tβg,n ◦ tβg−1 ◦ · · · ◦ tβ1) ◦ (tαg ◦ · · · ◦ tα1).

In other words, ϕn is a composition of two positive multi-twists along
systems of g disjoint curves. Each complementary region of the union
α1∪· · ·∪αg∪β1∪· · ·∪βg−1∪βg,n is either a boundary parallel annulus
or a polygon which has at least three sides (corresponding to sub-arcs
of the curves αi, βi). To see this, first cut the surface Sn along all the
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curves αi and βi except βg,n. The result is a pair of pants P , in which
βg,n appears as a finite union of disjoint properly embedded arcs, one of
which connects two distinct components of ∂P . The final cut along βg,n
results in a boundary parallel annulus and some discs. Therefore, the
curves fill up the surface Sn and they realise their geometric intersection
number (apply the bigon criterion of [13]). Moreover their union is
connected. This fits the setting of Thurston’s classical construction
for products of multi-twists (compare Section 2.4 above; see also [42,
Section 6]). To compute the geometric dilatation λn of ϕn, consider
the g × g geometric intersection matrix

N =


1
1 1

. . . . . .
1 1 4n

1 1


whose entry Nij is given by the number of intersection points (counted
without sign) between αi and βj. Note that γ ∩ c and αg−1 ∩ c consist
of two points each, which implies that γn (and therefore βg,n) intersects
αg−1 in 4n points. Let µn be the largest eigenvalue of the symmetric
matrix NN>, which is of the following form for g > 3.

NN> =



1 1
1 2

. . . 1
1 2 1

1 2 + 16n2 1 + 4n
1 + 4n 2


By a classical theorem of Geršgorin [16], the eigenvalues of a matrix
A are contained in the union of the discs in the complex plane with
centers Aii and radii

∑
j 6=i |Aij| and if a disc is disjoint from the others,

it must contain precisely one eigenvalue. For A = NN>, we see that
the Geršgorin disc of radius 2 + 4n centered at the largest diagonal
entry 2 + 16n2 is disjoint from all others if n 6= 0. Therefore

16n2 − 4n 6 µn 6 16n2 + 4n+ 4, ∀n 6= 0,

hence the µn are pairwise distinct and unbounded. By Thurston’s
construction, the map ϕn is pseudo-Anosov if and only if the following
2× 2 matrix representing ϕn is hyperbolic.

Tβ · Tα =

[
1 0

−µ1/2
n 1

]
·
[

1 µ
1/2
n

0 1

]
=

[
1 µ

1/2
n

−µ1/2
n 1− µn

]
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Its eigenvalues are the geometric stretching factors λ±1n of ϕn. A quick
computation yields

λ±1n =
1

2
(2− µn ∓

√
µ2
n − 4µn)

(we chose the signs such that |λn| > 1 for n 6= 0). In particular,
|λn| → ∞ as n → ∞ and the λn are pairwise distinct. This implies
that the knots Kn := ∂Sn are pairwise distinct and hyperbolic for n 6= 0.
For n = 0, we have K0 = T (2, 2g + 1), since the corresponding fibre
surface S0 is obtained by positive Hopf plumbing according to the tree

on 2g vertices. In particular, ϕ0 is a periodic mapping
class and λ0 is a root of unity.

By construction, Sn is a plumbing of 2g positive Hopf bands for all n.
Since a plumbing of positive Hopf bands is strongly quasipositive [34]
and fibred [40], Kn has the same properties, for all n ∈ N.

D

S
δ βg,n δ∗ βg,n

Figure 3. The linking number of δ∗ and βg,n equals the
algebraic intersection number of δ and βg,n ∩ S.

It remains to show that the Seifert forms of the surfaces Sn agree,
up to the obvious identification of H1(Sn,Z) = H1(S,Z)⊕ 〈βg,n〉 with
H1(Sm,Z) = H1(S,Z) ⊕ 〈βg,m〉. The Seifert forms clearly agree on
H1(S,Z), since the Sn are all given by plumbing on S. Now let δ ⊂ S
be a closed oriented curve and denote δ∗ a slight push-off along the
(positive or negative) direction normal to S. We have to prove that
the linking numbers of βg,n and βg,m with δ∗ agree. This follows from
the fact that βg,n and βg,m bound discs whose interiors are disjoint
from S, hence the linking numbers with δ∗ are given by the algebraic
intersection numbers between δ and βg,n, βg,m, respectively (compare
Figure 3). The latter agree since the arcs γn and γm are homologous
in S by construction. �
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Corollary 1. Let g > 2. There exist infinitely many hyperbolic strongly
quasipositive fibred knots of genus g, having

(1) maximal signature,
(2) periodic homological monodromy,
(3) isomorphic Alexander modules.

Proof. In the proof of Theorem 1 we constructed an infinite family of
strongly quasipositive fibred genus g knots Kn, n ∈ N, such that Kn is
hyperbolic for n 6= 0 and has the same Seifert form as K0 = T (2, 2g+1).
Since T (2, 2g+1) has maximal signature, this immediately implies (1).
A presentation matrix of the Alexander module of any given knot can
be directly computed from its Seifert form [30, Theorem 8C3]. Thus the
Alexander module is determined up to isomorphism by the Seifert form,
which implies (3). The homological monodromy M of a fibre surface is
related to its Seifert form A by the formula M = A−>A (compare [39,
Lemma 8.3]). Hence Kn has the same homological monodromy as K0,
which is periodic. This establishes (2). �

Proposition 1. Let Kn, n ∈ N, be the family of knots constructed in
the proof of Theorem 1. The following holds for all i, j ∈ N, i 6= j.

(1) Ki and Kj are not ribbon concordant,
(2) Ki and Kj are not homotopy ribbon concordant,
(3) the closed monodromy of Ki#(−Kj) does not extend over a

handlebody,
(4) the smooth four-ball genus of Ki#(−Kj) is at most one.

Remark. Note that homotopy ribbon concordance is (a priori) not a
symmetric relation. Here, we say that two knots are homotopy ribbon
concordant if one of them is homotopy ribbon concordant to the other.

Proof. By [18, Lemma 3.4], two homotopy ribbon concordant trans-
finitely nilpotent knots whose Alexander polynomials have the same
degree have to be equal (see [18] for the definition of transfinite nilpo-
tency). This implies (2), since fibred knots are transfinitely nilpotent
by [18, Corollary 5.4]. By a theorem of Casson and Gordon, (2) ⇔
(3) for fibred knots (see [11, Theorem 5.1]). The implication (2) ⇒
(1) holds for all knots. Assertion (4) essentially follows from the fact
that the surface Si#(−Sj) is given by plumbing two Hopf bands to the
surface S#(−S), which is ribbon. More precisely, we can find a zero-
framed unlink with unknotted components L1, . . . , L2g ⊂ Si#(−Sj)
which are realised as the embedded connected sum of the copies of the
curves αk, βk in S and −S, respectively. Cut Si#(−Sj) along Lk and
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glue two ribbon discs back in, for each k. Push the interior of the re-
sulting surface slightly into the four-ball to obtain a ribbon surface of
genus one. �

4. Further properties of the knots Kn

The subsequent statements refer to the family of knots Kn of a fixed
genus g > 2 constructed in the proof of Theorem 1.

(1) Since the signature of a knot is a lower bound for the topological
four-ball genus, we also have that gtop4 (Kn) = g4(Kn) = g(Kn).
In particular, the Kn are not slice (see [22] and [36]).

(2) The equality of the Seifert forms also implies that the Levine-
Tristram signature functions of the knots Kn agree.

(3) The Alexander polynomial of Kn is equal to the Alexander poly-
nomial of T (2, 2g + 1) and the knots Kn#(−Km) satisfy the
Fox-Milnor condition.

(4) By work of Hedden [19], the concordance invariant τ is maximal
for the knots Kn, that is, τ(Kn) = g(Kn) = g. Moreover, the
open book associated to Kn supports the tight contact structure
of S3, so the geometric monodromy of Kn is right-veering [21].

(5) The knots Kn are all prime since their geometric monodromies
are irreducible (they are pseudo-Anosov for n 6= 0).

(6) For n 6= 0, Kn cannot be represented by a positive braid. In
fact, positive braids of maximal signature have been classified
by Baader [2]. They all have periodic (geometric) monodromy.
All but finitely many of the Kn (probably all but K0) cannot be
represented by a positive knot diagram. This follows from the
fact that the number of positive knots of a fixed genus and fixed
signature function is finite; compare [3, Proof of Theorem 1].

(7) Similarly, all but finitely many of the Kn are non-alternating,
since the number of alternating links of a given Alexander poly-
nomial is finite by work of Stoimenow [41, Corollary 3.5].

(8) Except for a finite number of indices, the fibre surfaces of the Kn

cannot be Hopf-plumbed baskets (given by Hopf plumbing along
arcs on a fixed disc [37]). In fact, the number of Hopf-plumbed
baskets of a given genus is finite. This suggests that baskets
should be thought of as rare exceptions among quasipositive
fibre surfaces, at least from the point of view of general Hopf
plumbing. See also [5].

(9) The knots Kn can be obtained from K0 by Dehn surgery on a
fixed link. Recall the nullhomologous curve c ⊂ S ⊂ S0 from
the proof of Theorem 1. Consider two curves a, b ⊂ S3 \ S0
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which are obtained by pushing c off S in the negative normal
direction, such that a intersects the plumbing disc bounded by
βg,0 in two points near γ∩c, and b is pushed further out such that
it does not link βg,0. The curves a, b cobound an annulus which
intersects the last plumbed Hopf band H2g in two parallel arcs
and has no other intersection with S0 (compare Figure 4). Then
Kn is obtained from K0 by − 1

n
Dehn surgery on a, followed by

+ 1
n

Dehn surgery on b. The resulting ambient manifold is S3

again, because a and b are parallel and the surgery coefficients
cancel (compare [28, Theorem 2.1]). As a consequence, the
volume of Kn is bounded.

b

a

c

c

a

b

βg,0

γ

Figure 4. The surgery link a ∪ b ⊂ S3 \ S0 bounds an
annulus (grey-shaded).
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