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Exercises on Algebraic Curves

2. April 2019

Exercise 1. Let p ∈ C[x] and a ∈ C such that p(a) = 0. Show that
there exists q ∈ C[x] such that p(x) = (x− a)q(x).

Exercise 2. 2 · 2 = 4. Where are the two missing points?
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Exercise 3. Let X := {(x, y, z) ∈ C3 | xy = yz = xz = 0}. Show
that there do not exist two polynomials f, g ∈ C[x, y, z] such that
X = {(x, y, z) ∈ C3 | f(x, y, z) = g(x, y, z) = 0}.
Hint: P2(C) and Bézout’s theorem.
Remark: X is an example of an algebraic curve in C3 which is not
a complete intersection: its codimension does not equal the minimal
number of equations needed to describe it.

Exercise 4. Let p1, p2, . . . , pk ∈ R[x] be pairwise distinct polynomi-
als. Let a be a positive real number such that for all x ∈ (−a, a) \ {0},
pi(x) 6= pj(x) for i 6= j. Up to renumbering the pi, we may assume that
p1(x) < p2(x) < . . . < pk(x) for x ∈ (−a, 0). Then there exists a per-
mutation σ of {1, . . . , k} such that pσ(1)(x) < pσ(2)(x) < . . . < pσ(k)(x)
for x ∈ (0, a). In other words, k polynomials define a permutation on
k letters.

(a) Show that for k 6 3, any permutation of {1, . . . , k} can be
realised.

(b) Show that for k > 4, there exist permutations of {1, . . . , k}
which cannot be realised.
Remark: this was discovered in 2009 by Maxim Kontsevich, ac-
cording to Étienne Ghys.

(c) Convince yourself that for all k ∈ N, every permutation of
{1, . . . , k} can be realised (in the above sense) by k smooth
functions f1, . . . , fk.
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Exercise 5.

(a) Recall that a polynomial p ∈ R[x] with p(x) > 0 for all x ∈ R
always has a minimum. Now let q := x2y2+x2+2xy+1 ∈ R[x, y].
Show that q(x, y) > 0 for all (x, y) ∈ R2, but q has no minimum.

(b) Recall that a polynomial p ∈ R[x] with two distinct local mi-
nima always has a local maximum. Consider the polynomial
(x2y− x− 1)2 + (x2− 1)2 ∈ R[x, y]. Show that it has two mini-
ma but no other critical points.

9. April 2019

Exercise 6. Fix d, n ∈ N. The set of all homogeneous polynomials
in n variables of degree d, together with the zero polynomial, forms a
vector space. Compute its dimension in terms of d and n. What is the
dimension of the space of lines (degree 1), of conics (degree 2) and of
cubics (degree 3) in P2(C)?

Exercise 7. Let F ∈ C[x, y, z] be homogeneous of degree d. Show
that dF(x,y,z)(x, y, z) = d · F (x, y, z). Note that the d on the left side
denotes the differential, which is applied to the function F : C3 → C
at the point (x, y, z), evaluated on the vector (x, y, z).

Exercise 8. Given are two non-parallel lines on the floor of a room:
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Unfortunately, their intersection point is outside the room. Without
leaving the room, construct a third line going through the intersection
point, only using a pen and a straight edge.

Exercise 9. Let X := {[x : y : z] ∈ P2(C) | x3 + y3 + z3 = 0}.
(a) Show that X is a smooth compact oriented surface.
(b) Compute its genus.
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16. April 2019

Exercise 10. Prove that P1(C) is diffeomorphic to S2.

Exercise 11. Let Z := {(z1, . . . , zn) ∈ Cn | z21+. . .+z2n = 1}∩B(0, 2),
where B(0, 2) is the closed ball in Cn ∼= R2n of radius 2 centered at
0 ∈ Cn.

(a) Consider first the case n = 2. Show that Z is homeomorphic to
the cylinder S1 × [−1, 1].

(b) In general, show that Z is homeomorphic to T61S
n−1, the space

of tangent vectors of length 6 1 to the (n− 1)-sphere.

Exercise 12. Observe that the action of GL3(C) on C3 by matrix-
vector multiplication descends to an action of PSL3(C) on P2(C).

(a) Let T ∈ PSL3(C) and C ⊂ P2(C) a curve of degree d. Show
that T (C) is a curve of degree d.

(b) Given two smooth conics (curves of degree 2) C1, C2 ⊂ P2(C),
show that there exists T ∈ PSL3(C) such that T (C1) = C2.

Exercise 13. Recall that the space L of projective lines in P2(C) is
itself a copy of P2(C), thanks to the duality

δ : P2(C)→ L, [a : b : c] 7→ {[x : y : z] ∈ P2(C) | ax+ by + cz = 0}.
(a) Let L ∈ L and p, q, r ∈ L three distinct points. Show that

δ(p) ∩ δ(q) ∩ δ(r) = δ−1(L).
(b) Show that the subset of L given by all tangent lines to a given

smooth conic C is itself dual to a smooth conic in P2(C).
(c) What is the “image” of Pascal’s theorem under the map δ?

Exercise 14. An elliptic curve (not to be confused with an ellipse...)
is a smooth cubic (curve of degree 3) in P2(C). Let C be an elliptic
curve and e ∈ C a point on it. Define an addition on C as follows:
given two points p, q ∈ C, let L1 be the line through p, q (or, if p = q,
the tangent line to C at p). By Bézout’s theorem, there exists a unique
third point s ∈ C∩L1 besides p and q. Now take the line M1 through e
and s and define p+ q to be the third point on C ∩M1 besides e and s.
Show that (C,+, e) is an abelian group. Hint: to prove associativity,
that is, (p+q)+r = p+(q+r) for p, q, r ∈ C, consider L1,M1 as above,
L2 ∩ C 3 r, p + q; M2 ∩ C 3 q, r. Let t be the third point on M2 ∩ C.
Finally, L3 ∩ C 3 e, t, q + r and M3 ∩ C 3 p, q + r. Now consider the
three cubics C1 := L1 ∪ L2 ∪ L3, C2 := M1 ∪M2 ∪M3 and C.



4

23. April 2019

Exercise 15. Let p1, p2, p3, p4 ∈ P2(C). Let V ⊂ P5(C) be the linear
system of all conics C ⊂ P2(C) such that p1, p2, p3, p4 ∈ C. Show that
V is two-dimensional if the points lie on a line and one-dimensional
otherwise.

Exercise 16. Let g ∈ N, g > 1 and let a1, a2, . . . , a2g+1 ∈ C be
pairwise distinct points. Define p(x) := (x− a1)(x− a2) · · · (x− a2g+1)
and consider the curve

C := {(x, y) ∈ C2 | y2 = p(x)}.
Show that C is a smooth (noncompact) surface of genus g.
In particular, every nonnegative integer is realised as the genus of a
smooth affine curve. Consider the projectivisation of C and compare
genus and degree. Explain the discrepancy with the genus-degree for-
mula.
Remark: If g = 1, C is an elliptic curve. For g > 2, such curves are
called hyperelliptic.

Exercise 17. Let S3 = {(x, y) ∈ C2 | |x|2 + |y|2 = 1} be the 3-
dimensional sphere in C2 ∼= R4 and V = {(x, y) ∈ C2 | y2 = x3}. Draw
the set V ∩ S3.
Hint: Think of S3 as the one-point-compactification of R3, via the ste-
reographic projection.

30. April 2019

Exercise 18. Let γ : t 7→ (t4, t6 + t7). Find f ∈ C[x, y], f 6= 0, such
that f(γ(t)) = 0 for all t ∈ C.

Exercise 19. Consider the curve C = {(x, y) ∈ C2 | xn − ym = 0},
wherem,n ∈ N. How many components does the link T (m,n) := C∩S3

have (in terms of m,n)?

Exercise 20. Draw the link of (x2 − y3)(y2 − x3) = 0 near (0, 0).

7. May 2019

Exercise 21. Try Newton’s algorithm to approximate the branches
of the following curves near (0, 0).

(a) −x10 + x9 + 6x8y − 3x6y2 + 2x5y3 + 3x3y4 − y6 = 0
(b) 2x4 + x2y + 4xy2 + 4y3 = 0
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14. May 2019

Exercise 22. Apply the Seifert algorithm to the following diagram.
Compute the genus of the resulting surface. Find another Seifert sur-
face with smaller genus for the same link. Compute the linking number
of the two components. Reverse the orientation on one of the two com-
ponents and compute the linking number for the new link.

1

21. May 2019

Exercise 23. Which of the following four Seifert surfaces are isotopic?

⟲ ⟲

⟳

⟲

1

Exercise 24. Recall the definition of the (a, b)-cable of a knot K,
denoted K(a,b), and the definition of the torus knot T (a, b).

(a) Draw a diagram of the knot T (2, 3)(2,3).
(b) Draw a diagram of the knot associated to the Newton series

y = x3/2(1 + x1/4).
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Exercise 25. Show that

(a) K(1,n) = K, for all n ∈ Z.
(b) The (a, b)-cable of the unknot is the torus knot T (a, b).
(c) T (2, 3)(2,12) = T (4, 6). Can you generalise this phenomenon to

other cables of other torus links?

(Here the equality sign means isotopy between the corresponding links.)

Exercise 26. Show that the diagram represents a torus link T (a, b).
Find the parameters (a, b).

1

Exercise 27. Show that T (a, b) is isotopic to T (b, a).

25. June 2019

Exercise 28. If K is a fibred knot with fibre surface F , denote the
genus of F by g(K) := g(F ).

(a) Compute g(T (a, b)).
(b) Show that g(K(a,b)) = a · g(K) + g(T (a, b)).

Exercise 29. Let C ⊂ C2 be the zero set of a weighted-homogeneous
polynomial f ∈ C[x, y] with weights w(x) = a, w(y) = b and w(f) = n,
that is, f(λax, λby) = λnf(x, y) for all (x, y) ∈ C2 and λ ∈ C. Let
K = C ∩ S3 be its link at (0, 0), where S3 is a small sphere. Consider
the Milnor fibration p := f

|f | : S3 \C → S1 with fibres Fθ := p−1(θ)∪K
and monodromy ϕ : F1 → F1. Show that ϕ is isotopic to a periodic
map, by an isotopy h : F1 × [0, 1]→ F1 (which is allowed to move the
points of ∂F1 = K).
Hint: Let ζt := e2πit/n and Φt : C2 → C2, (x, y) 7→ (ζat x, ζ

b
t y). Modify

Φt|S3 in a neighbourhood N(K) ∼= S1×D2 of K to obtain a monodromy
flow.
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2. July 2019

Exercise 30. Compute the matrix M of the homological monodromy
of T(2,3), with respect to some basis of H1(S,Z), where S is the fibre
surface of T (2, 3). Verify that M has finite order.

Exercise 31. Let K be the following knot.

1

Show that

(a) K is not the trivial knot,
(b) K is not fibred,
(c) K is not algebraic.

Hint: Compute the Alexander polynomial of K.

Exercise 32. Let S be a fibre surface with homological monodromy
M : H1(S,Z)→ H1(S,Z) and let A : H1(S,Z)×H1(S,Z)→ Z be the
Seifert form of S.

(a) Show that M is an “isometry” with respect to A, that is, for
all x, y ∈ H1(S,Z), we have A(Mx,My) = A(x, y).

(b) Assume that the symmetrised Seifert form A + A> is positive
definite. Show that M has finite order and conclude that the
eigenvalues of M are roots of unity.
Hint: Let M act on a ball of radius r in H1(S,Z) ∼= Zn ⊂ Rn,
with respect to the norm induced by the bilinear form A+A>.
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9. July 2019

Exercise 33. Describe the monodromy of the following singularities
at 0 ∈ C2, using a resolution by iterated blow-up.

(a) xy
(b) y12 − x30
(c) xy2 − x4
(d) (x2 − y3)(x3 − y2)

Specifically, determine the decomposition of the Milnor fibre induced
by the resolution, describe the topological type of the pieces (number of
connected components, genus and number of boundary components of
each piece), how they are permuted under the monodromy, determine
the periods of the monodromy on each piece and describe the amount
of twisting that occurs at each curve along which the pieces are glued.

Exercise 34. Read the following article about a discovery of Étienne
Ghys relating Lorentz knots, the modular flow and the Rademacher
function (or watch a recording of Ghys’ ICM talk from 2006).
https://www.ams.org/publicoutreach/math-history/hap7-new-twist.pdf


