
 

  
 

 
AVR221: Discrete PID controller 

Features 
• Simple discrete PID controller algorithm 
• Supported by all AVR devices 
• PID function uses 534 bytes of code memory and 877 CPU cycles (IAR - low size 

optimization) 

1 Introduction 
This application note describes a simple implementation of a discrete Proportional-
Integral-Derivative (PID) controller. 

When working with applications where control of the system output due to changes 
in the reference value or state is needed, implementation of a control algorithm 
may be necessary. Examples of such applications are motor control, control of 
temperature, pressure, flow rate, speed, force or other variables. The PID controller 
can be used to control any measurable variable, as long as this variable can be 
affected by manipulating some other process variables. 

Many control solutions have been used over the time, but the PID controller has 
become the ‘industry standard’ due to its simplicity and good performance. 

For further information about the PID controller and its implications the reader 
should consult other sources, e.g. PID Controllers by K. J. Astrom & T. Hagglund 
(1995). 

 

Figure 1-1. Typical PID regulator response to step change in reference input 

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12 p

pi
pid

ref

 

 

8-bit   
Microcontrollers 
 
Application Note 
 
 
 

Rev. 2558A-AVR-05/06 



 

2 AVR221 
2558A-AVR-05/06 

2 PID controller 
In Figure 2-1 a schematic of a system with a PID controller is shown. The PID 
controller compares the measured process value y with a reference setpoint value, 
y0. The difference or error, e, is then processed to calculate a new process input, u. 
This input will try to adjust the measured process value back to the desired setpoint. 

The alternative to a closed loop control scheme such as the PID controller is an open 
loop controller. Open loop control (no feedback) is in many cases not satisfactory, 
and is often impossible due to the system properties. By adding feedback from the 
system output, performance can be improved. 

Figure 2-1. Closed Loop System with PID controller 

PID Systemue0y y
-

 
 
Unlike simple control algorithms, the PID controller is capable of manipulating the 
process inputs based on the history and rate of change of the signal. This gives a 
more accurate and stable control method. 

The basic idea is that the controller reads the system state by a sensor. Then it 
subtracts the measurement from a desired reference to generate the error value. The 
error will be managed in three ways, to handle the present, through the proportional 
term, recover from the past, using the integral term, and to anticipate the future, 
through the derivate term. 

Figure 2-2 shows the PID controller schematics, where Tp, Ti, and Td denote the time 
constants of the proportional, integral, and derivative terms respectively. 

Figure 2-2. PID controller schematic 

pK

dT

iT

dt
d

e u

 
 



 AVR221
 

 3

2558A-AVR-05/06 

2.1 Proportional term 
The proportional term (P) gives a system control input proportional with the error. 
Using only P control gives a stationary error in all cases except when the system 
control input is zero and the system process value equals the desired value. In Figure 
2-3 the stationary error in the system process value appears after a change in the 
desired value (ref). Using a too large P term gives an unstable system.  

Figure 2-3. Step response P controller 

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12 p

ref

 

2.2 Integral term 
The integral term (I) gives an addition from the sum of the previous errors to the 
system control input. The summing of the error will continue until the system process 
value equals the desired value, and this results in no stationary error when the 
reference is stable. The most common use of the I term is normally together with the 
P term, called a PI controller. Using only the I term gives slow response and often an 
oscillating system. Figure 2-4 shows the step responses to a I and PI controller. As 
seen the PI controller response have no stationary error and the I controller response 
is very slow.  



 

4 AVR221 
2558A-AVR-05/06 

Figure 2-4. Step response I and PI controller 

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12 p

i
pi

ref

 

2.3 Derivative term 
The derivative term (D) gives an addition from the rate of change in the error to the 
system control input. A rapid change in the error will give an addition to the system 
control input. This improves the response to a sudden change in the system state or 
reference value. The D term is typically used with the P or PI as a PD or PID 
controller. A to large D term usually gives an unstable system. Figure 2-5 shows D 
and PD controller responses. The response of the PD controller gives a faster rising 
system process value than the P controller. Note that the D term essentially behaves 
as a highpass filter on the error signal and thus easily introduces instability in a 
system and make it more sensitive to noise. 



 AVR221
 

 5

2558A-AVR-05/06 

Figure 2-5. Step response D and PD controller 

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12 p

d
pd

ref

 
Using all the terms together, as a PID controller usually gives the best performance. 
Figure 2-6 compares the P, PI, and PID controllers. PI improves the P by removing 
the stationary error, and the PID improves the PI by faster response and no 
overshoot. 

Figure 2-6. Step response P, PI and PID controller 

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12 p

pi
pid

ref

 
 



 

6 AVR221 
2558A-AVR-05/06 

2.4 Tuning the parameters 
The best way to find the needed PID parameters is from a mathematical model of the 
system, parameters can then be calculated to get the desired response. Often a 
detailed mathematical description of the system is unavailable, experimental tuning of 
the PID parameters has to be performed. Finding the terms for the PID controller can 
be a challenging task. Good knowledge about the systems properties and the way the 
different terms work is essential. The optimum behavior on a process change or 
setpoint change depends on the application at hand. Some processes must not allow 
overshoot of the process variable from the setpoint. Other processes must minimize 
the energy consumption in reaching the setpoint. Generally, stability is the strongest 
requirement. The process must not oscillate for any combinations or setpoints. 
Furthermore, the stabilizing effect must appear within certain time limits.  

Several methods for tuning the PID loop exist. The choice of method will depend 
largely on whether the process can be taken off-line for tuning or not. Ziegler-Nichols 
method is a well-known online tuning strategy. The first step in this method is setting 
the I and D gains to zero, increasing the P gain until a sustained and stable oscillation 
(as close as possible) is obtained on the output. Then the critical gain Kc and the 
oscillation period Pc is recorded and the P, I and D values adjusted accordingly using 
Table 2-1. 

Table 2-1. Ziegler-Nichols parameters 
Controller Kp Ti Td 

P 0.5 * Kc    

PD 0.65 * Kc  0.12 * Pc 

PI 0.45 * Kc 0.85 * Pc  

PID 0.65 * Kc 0.5 * Pc 0.12 * Pc 
 

Further tuning of the parameters is often necessary to optimize the performance of 
the PID controller. 

The reader should note there is systems where the PID controller will not work very 
well, or will only work on a small area around a given system state. Non-linear 
systems can be such, but generally problems often arise with PID control when 
systems are unstable and the effect of the input depends on the system state.  

2.5 Discrete PID controller 
A discrete PID controller will read the error, calculate and output the control input at a 
given time interval, at the sample period T . The sample time should be less than the 
shortest time constant in the system. 



 AVR221
 

 7

2558A-AVR-05/06 

2.5.1 Algorithm background 

Unlike simple control algorithms, the PID controller is capable of manipulating the 
process inputs based on the history and rate of change of the signal. This gives a 
more accurate and stable control method. 

Figure 2-2 shows the PID controller schematics, where Tp, Ti, and Td denotes the 
time constants of the proportional, integral, and derivative terms respectively. 

The transfer function of the system in Figure 2-2: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++== sT

sT
KsHs

e
u

d
i

p
11)(  

 
This gives u with respect to e in the time domain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∫ dt

tdeTde
T

teKtu d

t

i
p

)()(1)()(
0

σσ  

 
Approximating the integral and the derivative terms to get the discrete form, using: 

∑∫
=

≈
n

k

t

keTde
00

)()( σσ        
( ) ( ) ( )

T
nene

dt
tde 1−−
≈        nTt =  

Where n is the discrete step at time t. 
This gives the controller: 

( ) ( ) ( ) ( )( )1)(
0

−−++= ∑
=

neneKkeKneKnu d

n

k
ip  

Where: 

i

p
i T

TK
K =           

T
TK

K dp
d =  

 
To avoid that changes in the desired process value makes any unwanted rapid 
changes in the control input, the controller is improved by basing the derivative term 
on the process value only: 

( ) ( ) ( ) ( )( )1)(
0

−−++= ∑
=

nynyKkeKneKnu d

n

k
ip  



 

8 AVR221 
2558A-AVR-05/06 

3 Implementation 
A working implementation in C is included with this application note. Full 
documentation of the source code and compilation information if found by opening the 
‘readme.html” file included with the source code. 

 

Figure 3-1. Block diagram of demo application 
pid.c  /  pid.h

              pid
 LAST_PROCESS_VALUE
 SUM_ERROR
 P_FACTOR
 I_FACTOR
 D_FACTOR
 MAX_ERROR
 MAX_SUM_ERROR

Init_PID()

PID()

main()

setPoint, processValue

control input

p_factor, i_factor

d_factor

PID_timer

 
 
In Figure 3-1 a simplified block diagram of the demo application is shown.  

The PID controller uses a struct to store its status and parameters. This struct is 
initialized in main, and only a pointer to it is passed to the Init_PID() and PID() 
functions. 

The PID() function must be called for each time interval T, this is done by a timer 
who sets the PID_timer flag when the time interval has passed. When the PID_timer 
flag is set the main routine reads the desired process value (setPoint) and system 
process value, calls PID() and outputs the result to the control input. 

To increase accuracy the p_factor, i_factor and d_factor are scaled with a factor 
1:128. The result of the PID algorithm is later scaled back by dividing by 128. The 
value 128 is used to allow for optimizing in the compiler. 

pKPFactor 128=  
Furthermore the effect of the IFactor and DFactor will depend on the sample time T . 

i
p T

TKIFactor 128=  

T
T

KDFactor d
p128=  

3.1 Integral windup 
When the process input, u, reaches a high enough value, it is limited in some way. 
Either by the numeric range internally in the PID controller, the output range of the 
controller or constraints in amplifiers or the process itself. This will happen if there is a 
large enough difference in the measured process value and the reference setpoint 
value, typically because the process has a larger disturbance / load than the system 
is capable of handling. 



 AVR221
 

 9

2558A-AVR-05/06 

If the controller uses an integral term, this situation can be a problematic. The integral 
term will sum up as long as the situation last, and when the larger disturbance / load 
disappear, the PID controller will overcompensate the process input until the integral 
sum is back to normal. 

This problem can be avoided in several ways. In this implementation the maximum 
integral sum is limited by not allowing it to become larger than MAX_I_TERM. The 
correct size of the MAX_I_TERM  will depend on the system and sample time used. 

4  Further development 
The PID controller presented here is a simplified example. The controller should work 
fine, but it might be necessary to make the controller even more robust (limit 
runaway/overflow) in certain applications. Adding saturation correction on the integral 
term, basing the proportional term on only the system process value can be 
necessary. 

In the calculating of IFactor and DFactor the sample time T  is a part of the equation. 
If the sample time T used is much smaller or larger than 1 second, accuracy for 
either IFactor or DFactor will be poor. Consider rewriting the PID algorithm and 
scaling so accuracy for the integral and derivate term is kept. 

5 Literature references 
K. J. Astrom & T. Hagglund, 1995: PID Controllers: Theory, Design, and Tuning. 
International Society for Measurement and Con. 

 



 

2558A-AVR-05/06 

 
 

Disclaimer 
Atmel Corporation 

 
2325 Orchard Parkway 
San Jose, CA 95131, USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 487-2600 
 

Regional Headquarters 
Europe 

Atmel Sarl 
Route des Arsenaux 41 
Case Postale 80 
CH-1705 Fribourg 
Switzerland 
Tel: (41) 26-426-5555 
Fax: (41) 26-426-5500 

Asia 
Room 1219 
Chinachem Golden Plaza 
77 Mody Road Tsimshatsui 
East Kowloon 
Hong Kong 
Tel: (852) 2721-9778 
Fax: (852) 2722-1369 

Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chuo-ku, Tokyo 104-0033 
Japan 
Tel: (81) 3-3523-3551 
Fax: (81) 3-3523-7581 

 

Atmel Operations 
Memory 

2325 Orchard Parkway 
San Jose, CA 95131, USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 436-4314 

Microcontrollers 
2325 Orchard Parkway 
San Jose, CA 95131, USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 436-4314 
 
La Chantrerie 
BP 70602 
44306 Nantes Cedex 3, France 
Tel: (33) 2-40-18-18-18 
Fax: (33) 2-40-18-19-60 

ASIC/ASSP/Smart Cards 
Zone Industrielle 
13106 Rousset Cedex, France 
Tel: (33) 4-42-53-60-00 
Fax: (33) 4-42-53-60-01 
 
1150 East Cheyenne Mtn. Blvd. 
Colorado Springs, CO 80906, USA 
Tel: 1(719) 576-3300 
Fax: 1(719) 540-1759 
 
Scottish Enterprise Technology Park 
Maxwell Building 
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000 
Fax: (44) 1355-242-743 

 

 

RF/Automotive 
Theresienstrasse 2 
Postfach 3535 
74025 Heilbronn, Germany 
Tel: (49) 71-31-67-0 
Fax: (49) 71-31-67-2340 
 
1150 East Cheyenne Mtn. Blvd. 
Colorado Springs, CO 80906, USA 
Tel: 1(719) 576-3300 
Fax: 1(719) 540-1759 

Biometrics/Imaging/Hi-Rel MPU/ 
High Speed Converters/RF Datacom 

Avenue de Rochepleine 
BP 123 
38521 Saint-Egreve Cedex, France 
Tel: (33) 4-76-58-30-00 
Fax: (33) 4-76-58-34-80 

 

 
 Literature Requests 

www.atmel.com/literature 
 
 

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND 
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED 
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS 
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN 
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the 
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any 
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, 
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 
 
 
 
© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and AVR Studio® are 
the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 
 

 


	1 Introduction 
	2 PID controller 
	2.1  Proportional term 
	2.2 Integral term 
	2.3 Derivative term 
	2.4  Tuning the parameters 
	2.5 Discrete PID controller 
	2.5.1  Algorithm background 

	3  Implementation 
	3.1 Integral windup 

	4  Further development 
	5 Literature references 


