
Development of electronic
compounds for DFPOP

Prototype III
Exemplary new designed and developed

components:
Basic Tiger board

Stepper-motor-control
new Photo counter and control module with

a modern Mitsubishi Microcontroller M16C62P
by

Christof Ermer
University Regensburg / Germany

Basic Tiger Modul Board

Reflection:

Not everybody can be a good scientist, a good C-
language programmer, a good electronic specialist, a
good concept designer and, of course, a mechanic genie.
But the practical requests are really complicated and it is
necessary to bring together this requests.

(one possible)

Solution:

We need also a simple to use Controller

That is now realized with the Basic Tiger Module board with
a included ready to use, self kitted software (Firmware).

Environment and components in
measure-instruments

Master Microcontroller

In modern measure-instruments we have to do with the controlling of very
different components.
This job is done by a microcontroller.

Photomultiplier
counting device

High resolution (24 Bit)
Analog-Digital converter

Power switch relays
for heater / cooler

Input / Output
TTL (+5V) Signal control
Many lines are necessary

Multible VCOs
(voltage controlled oscillator)

for soft Stepmotor start and running

Many other possible requests

A reason to be happy !
The Tiger-Basic-board talks with you, doing what

you want (really !) and doesn‘t contradict you !!
(…most of the time)

How it works:

◼ The Tiger Basic Module (in future called „TB“) is
an integrated Device which provides a series of
standard requests in electronic environment.

◼ Like: Input-Output lines with TTL-Level (+5V),
Analog-Digital converter, LCD Display. Frequency
generator and much more.

◼ {The wheel is made up. You must only use it.}

The self-developed control board with the
TB Controller and the self written and

adapted integrated software contains most
of the requests for the DFPOP measure

instrument.

The electronic components like VCO, I-O
Lines, ADC, LCD Display and Power supply
are arranged around the Tiger Basic
module. →see following diagram

Conception of the Basic Tiger board

Viewing of board design

3D-Model of Basic Tiger Bord

Working and controlling using the
Tiger-Board

◼ A simple 3-wire and string based serial
communication between the TB-Bord is
necessary and established.

◼ You talk to the TB in the simplest case with an
ordinary terminal program.

◼ A windows control software like „Testpoint“ is a
good solution to automate working steps.

◼ The results can be displayed and interpreted
simply on the local PC.

Simple steps to using the Tiger
Basic Board.

Example: Using included
ordercodes (mnemonics)

◼ We want to check the availability or the lifesigns
of the TB Board

◼ You send the order
◼ „Ping“ and a „carriage return“ (CR).
◼ Under correct conditions the TB answers with
◼ „Pong“ and a „carriage return“ (CR) too.
◼ Afterwards the TB waits for the next order

signing a questionmark
◼ „?“ (means …awaiting next order)
◼

Oders are listed in the build-in menu to
prevent loss of documentaion

◼ A big selection of orders are realised in
the current firmware-

◼ To show the possible orders type „??“+CR

◼ Then you get a list of all most used orders
and sequences

Some Order examples

◼ oXb => (X=Out Port 1..2)put BYTE on external port

◼ M1LO M1RO MO1F, M2LO M2RO MO2F, M4LO M4RO

◼ uXu => (X=ADC1..2) 1* voltage measurement

◼ vXo => (X=VCO 1..6) ON

◼ mXf => (X=MOTOR 1..2) OFF

◼ iadX => (X=ADC1..4) intern 10Bit

◼ rXo => (X=Relays 1..2)ON

◼ rXf => (X=Relays 1..2)OFF

◼ INP8P = { whole byte } of fixed direction InPort_8

How it looks in BASIC code
◼ PRINT #SER, #0, " MENUE "
◼ 'PRINT #SER, #0, " PCOOLO => Cooler ON, PCOOLF => Cooler OFF"
◼ 'PRINT #SER, #0, " HEATO => HEAT ON HEATF => HEAT OFF"
◼ PRINT #SER, #0, " TCOH => Anzeige 'ToCoolOrHeat <> 20 Grad OR OK"
◼ PRINT #SER, #0, " M1LO M1RO MO1F, M2LO M2RO MO2F, M4LO M4RO MO4F" ' Motor 1,2,4 LINKS/RECHTS On OFF
◼ PRINT #SER, #0, " SNNCLK=>Set -->NN*CLK Clocks on M3. VORHER 1* EINSTELLEN !! (default 180)"
◼ PRINT #SER, #0, " NNSPEED => Set -->SNN. VORHER 1* EINSTELLEN !!(default 0)Speed of M3)"
◼ PRINT #SER, #0, " M3LO, M3RO => MOTOR 3 LeftSpin ON mit NN*CLK. Stop=MO3F"
◼ PRINT #SER, #0, " scoolontime or scoolofftime => in MS. Default 30s 20s is used"
◼ PRINT #SER, #0, " shysterese =>(0..255)(default=2 NTC Vals)"
◼ PRINT #SER, #0, " S20GRADNTC => of ADC1. Default = 584"
◼ PRINT #SER, #0, " gettemp => Grad C of NTC"
◼ PRINT #SER, #0, " uXu => (X=ADC1..2) 1* voltage measurement"
◼ PRINT #SER, #0, " uXl => (X=ADC1..2) 1* TX Long CVal voltage "
◼ PRINT #SER, #0, " rXo => (X=Relais 1..2)ON"
◼ PRINT #SER, #0, " rXf => (X=Relais 1..2)OFF"
◼ PRINT #SER, #0, " vXo => (X=VCO 1..6) ON"
◼ PRINT #SER, #0, " vXf => (X=VCO 1..6) OFF"
◼ PRINT #SER, #0, " mXo => (X=MOTOR 1..2) ON"
◼ PRINT #SER, #0, " mXf => (X=MOTOR 1..2) OFF"
◼ PRINT #SER, #0, " oXb => (X=OutPort 1..2)put BYTE on external port (1 Steps)"
◼ PRINT #SER, #0, " oXt => (X=OutPort 1..2) put Bit on external port (2 Steps)"
◼ PRINT #SER, #0, " cXY => (X=OutPort 1..2, Y=Biz 0..7) Clear bit Y on outport X"
◼ PRINT #SER, #0, " SXY => (X=OutPort 1..2, Y=Biz 0..7) Set bit Y on outport X"
◼ PRINT #SER, #0, " iadX => (X=ADC1..4) intern 10Bit"
◼ PRINT #SER, #0, " #iadX => (X=ADC1..4) intern 10Bit, Reine Zahl ohne Liste"
◼ PRINT #SER, #0, " inp8X => (X=bit 0..7) 1Bit of fixed direction InPort_8"
◼ PRINT #SER, #0, " INP8P = ganzes BYte } of fixed direction InPort_8"
◼ PRINT #SER, #0, " frq7XY = {X=2.3} {Y=A..B} Frequency of Port72/72 A or B"
◼ PRINT #SER, #0, " cpwm7X => (X=PWM Port 2..3) Clear switch L72/L73 on J16"
◼ PRINT #SER, #0, " spwm7X => (X=PWM Port 2..3) Set switch L72/L73 on J16"
◼ PRINT #SER, #0, " pwmX => (X=1..2) PWM an Port L72/73) (2 Steps) (2.=Bytewert)"
◼ PRINT #SER, #0, " Q => Quit"
◼ PRINT #SER, #0, " "
◼ PRINT #SER, #0, "Order with Pre # Bsp: #U1L send value without delimiter list"
◼ PRINT #SER, #0, " ?? => Show command menue again. OR press m,?,??"
◼ PRINT #SER, #0, " "
◼ PRINT #SER, #0, " Please select command"
◼ PRINT #SER, #0, " "

A closer look to the
electronic schematic

Some is simple, some not.

That‘s live.

Don‘t be frightened. !

All people are cooking with water.

No magic is necessary.

A good design is beautiful and looks clear.

Schematic View 1of 7

2 of 7

3 of 7

4 of 7

5 of 7

6 of 7

7 of 7

Reasons for a self-developed Step-Motor power
driver device

Purchasable step motor drivers are very expensive.
◼The possible coil-current of many of these devices is to
low for the used power supply
◼The quality has in many cases not the demanded
conditions.
◼The mechanical dimensions are in many cases not
optimal.
◼To prevent start problems by the step motor, the internal
resistance of the motor driver must be very low. That
allows high current pulses for better starting conditions !.
◼Resolution:
◼If you want something to be done, do it yourself.

Construction principle of a step motor

Step motor driver concept

Stepmotor driver schematic

Board design

3D Viewing of the Stepmotor board

View on the 2*4 Ampere Step motor control

The control
has the
same width
as the most
used step
motors

Example: Device with the Basic-Tiger board and 4
stepmotor driver in developing state

The new CPU
Mitsubishi M16C62P Microcontroller

◼ The fast developing in electronic requires from
time to time chances in the construction of
electronic. In this case we searched for a
substitute for an obsolete, antiquated and old-
fashioned counter chip from AMD and additional
the present 8 Bit CPU.

◼ *CPU = Central processor unit

The next generation…(not Star Trek)

◼ In earlier times we needed for every job much separate
devices, like amplifiers, discrete transistors, one-job-
chips, extra memory and much more ….

◼ Modern microcontrollers integrate much of this separate
units.

◼ We found a very cheap and at the same time extremely
powerful ready-to-use board with the Mitsubishi 16 Bit
RISC controller from the 16C62 family

◼ Additional is a free of charge and size unlimited C-
Compiler available. That opens the way to a professional
software developing and using of very fast interrupt
routines.

◼ Remember. A quality C-compiler costs normally way from
2000$...>

Ready-to-use M16C62P evaluation board by
Glyn with the M30626FHPFP processor

Additional features

◼ Internal flashmemory (reloadable resident
program storage)

◼ Immense space of dynamic memory
(RAM) is on chip .

◼ 11 Counter/Timer on chip

◼ 8 Channel 10Bit ADC on Chip

◼ Much 8 Bit Ports for Input / OutPut

That sounds like this controller does
what we need to do for our work. !

Components of DFPOP

A little introduction to the inner life
of the M16C62 controller

We write a C-language software that allows
the use of the controller in the same
“mnemonic” code control technique like by
the Tiger-Basic module.

That makes the using in the same way
simple.

But now we can use the inner components
of the controller.

The photocounter section

The C-language firmware configurates the
controller to use the timer “B” section for a 2
channel photocounter. That is done by a 1/12
second, interrupt driven reading routine.

Additional a 1 millisecond pulse is generated.

It is used as a system counter.

Counter using for photo counting

Signal and frequency synthesis
section

◼ The five timers/counters “A” have enough
possibilities to realize exact pulsecounts,
and frequencies. TA0-TA1 are cascaded for
better precision of the synthesized
frequency.

Timerusing for different jobs like Frequency
synthesis and controlled pulseout

Precounter schematic

2 channel precounter module
for direct soldering to M16C62 doard

◼ C) Universitaet Regensburg
◼ Version:11.00 vom 10.12.2003
◼ Glyn Bord with 30624 FGAFP
◼ MEANING:(x,y,z)=Selctable,[x]=Default
◼ sampleset =>1sec=[1]; 1/4sec=4; 1/2sec=2; 3/4sec =3 ([1],2,3,4)
◼ spwmX (X=1,2,3)=>Set PWM & Start
◼ offpwmX (X=1,2,3)
◼ p0in => 8 Bit input
◼ pXsb =>X=(1,2,3) Port X Set Bit 2.Eingabe erford.(0..7)
◼ pXcb =>X=(1,2,3) Port X Clear Bit 2.Eingabe erford.(0..7)
◼ pXout =>X=(1,2,3) BYTESET 2.Eingabe erford.
◼ getphotocnt{gpt} =>returns akt.PhotoCnt, Chan1<CR>Chan2<CR>
◼ mprc => Set MP-Repeats[1]<CR>
◼ mp =>returns akt.PhotoCnt, <TAB>Chan1<TAB>Chan2<CR>
◼ cntch12o; cntch12f => Polling Counter 1+2 ON/OFF
◼ frqset =>Frq set
◼ frqon,frqof =>Frequenz TA1_OUT->P28
◼ adcX =>X=1..7
◼ p4ps p4_pulsstart
◼ p4spb =>p4_setpulsbit, Port4 Bit 0..3], -->P4[0]Default
◼ p4spc =>p4_setpulscnt, NN Pulse [1]
◼ p4spf p4_setpulsfrq, (1..500),[10], Counts/sec
◼ qq =>qs, =>START sq=>STOP Polling Counter
◼ xxx => General Break of Loops
◼ ??, ???, ???? => Menue, Pinbeschreibung, MP-Mnue

PinBelegung
2*25pol. Steckerleiste unten=A, oben=B

Frequenz Out = TA1Out = Port.72 = Pin A28
PWM 1 Out = TA2Out = Port_74 = Pin A26
PWM 2 Out = TA3Out = Port_76 = Pin A24
PWM 3 Out = TA4Out = Port_80 = Pin A22

sonstige Verwendung
TB2=1mSec.Generator

TB5=1/12Sec.Generator
ADC(0..7)= Port_10(0..7) Pin B47..B40

PORT_4(Bit0..3) = NN_Pulse Out = PIN B0..3
PORT_0 = 8Bit Input = PIN B38.. B31

PORT_1..3 = 8Bit Output = Pin B30..B05

mp =>returns akt.PhotoCnt, <TAB>Chan1<TAB>Chan2<CR>
mprc => Set MP-Repeats[1]

stmep =>Set StepMotor Enalbe Port {[1](1..3)
stmeb =>Set StepMotor Enalbe BIT {[0](0..7)

stmdp =>Set StepMotor Direction Port {[1](1..3)
stmdp =>Set StepMotor Direction Bit {[0](0..7)

p4spb p4_setpulsbit =>Port4 Bit 0..3], -->P4[0]Default
p4spc p4_setpulscnt =>NN Pulse [1]

p4spf p4_setpulsfrq =>(1..500),[10], Counts/sec
xxx => General Break of Loops

??, ??? => Menue, Pinbeschreibung ???? MP-Menue

Quality control

We can do much to avoid this situation.

We work for clean
and healthy water.

Fine, but if you see
two dolphins you
are all right,

if not, you have
probably a burn
out.

