Quantum Theory of Condensed Matter I

Prof. John Schliemann

Dr. Paul Wenk, M.Sc. Martin Wackerl

Mo. 08:00-10:00 c.t., PHY 5.0.21

Sheet 9

Here, we continue our calculation from Sheet 8, Ex.2. The goal is to determine $\langle S^z \rangle$.

- (a)(2P) Show that the regularity of the commutator Green's functions at E = 0 does not allow spontaneous magnetization of the system.
- (b)(2P) Calculate the spectral densities which are related to the commutator Green's functions G_{11} , G_{21} and $\Gamma \equiv \Gamma_{12} - \Gamma_{21}$, as a function of $\langle S^z \rangle$ and ρ_{12} . *Hint: Dirac identity.*
- (c)(2P) Use the spectral theorem and (b) to calculate the equal-time correlation functions $\langle S_1^+ S_1^- \rangle$, $\langle S_1^+ S_2^- \rangle$ and $\langle S_1^+ S_1^z S_2^- \rangle - \langle S_1^+ S_2^z S_1^- \rangle$. The appearing related constants D_{11} , D_{21} and D_{Γ} will be determined in the next step.
- (d)(2P) Calculate the equations of motion for the *anticommutator* Green's functions according to Sheet 8, Ex.2. Eq.(5)-(8). Using their residua of the E = 0 poles, determine the constants D_{11} , D_{21} and D_{Γ} .
- (e)(2P) Having the correlation functions fully determined in (c), show that

$$\langle S^z \rangle = \frac{\hbar}{2} \frac{e^{\beta b} - e^{-\beta b}}{1 + e^{-2\beta\hbar^2 J} + e^{\beta b} + e^{-\beta b}} \tag{1}$$

with $b = g_J \mu_B B$. Discuss the case $J \to 0$ and b = 0.

We analyze the BCS¹ model Hamiltonian which is based on mean-field theory,

$$H_{\rm BCS}^{\rm MF} = \sum_{\mathbf{k},\sigma} t(\mathbf{k}) a_{\mathbf{k}\sigma}^{\dagger} a_{\mathbf{k}\sigma} - \Delta \sum_{\mathbf{k}} (b_{\mathbf{k}} + b_{\mathbf{k}}^{\dagger}), \qquad (2)$$

with $t(\mathbf{k}) = (\epsilon(\mathbf{k}) - \mu)$, $t(\mathbf{k}) = t(-\mathbf{k})$, the electron creation (annihilation) operator $a^{\dagger}_{\mathbf{k}\sigma}$ ($a_{\mathbf{k}\sigma}$) in Blochrepresentation and the Cooper pair creation operator $b^{\dagger}_{\mathbf{k}} = a^{\dagger}_{\mathbf{k}\uparrow}a^{\dagger}_{-\mathbf{k}\downarrow}$. Calculate the single-electron retarded Green's function

$$G_{\mathbf{k}\sigma}^{\mathrm{ret}}(E) = \langle\!\langle a_{\mathbf{k}\sigma}; a_{\mathbf{k}\sigma}^{\dagger} \rangle\!\rangle_E^{\mathrm{ret}}$$
(3)

and with this the excitation energy of the superconductor. Show that the spectrum is gapped.

¹John Bardeen, Leon Neil Cooper and John Robert Schrieffer