Quantum Theory of Condensed Matter I

Prof. John Schliemann
Dr. Paul Wenk, M.Sc. Martin Wackerl
Мо. 08:00-10:00 c.t., PHY 5.0.21

Sheet 8

The Kubo Formula for the Conductivity II

We continue Ex.1, sheet 7. In the following we are going to rewrite the Kubo formula in a form which is often the starting point for treating the effect of disorder when calculating conductivity in wires.
(a)(5P) In the first step we assume to have the spectrum ϵ_{n} of the Hamiltonian $H=\sum_{n} \epsilon_{n} a_{n}^{\dagger} a_{n}$ with according eigenstates $|n\rangle$. Using the previous result from sheet 7 , show that we can further rewrite $\sigma^{\beta \alpha}(\omega)$ as follows:

$$
\begin{equation*}
\sigma^{\beta \alpha}(\omega)=\mathrm{i} \hbar V \sum_{n m} \frac{f\left(\epsilon_{n}\right)-f\left(\epsilon_{m}\right)}{\left(\epsilon_{m}-\epsilon_{n}\right)\left(\epsilon_{m}-\epsilon_{n}+\hbar \omega+\mathrm{i} 0^{+}\right)}\langle n| \tilde{j}^{\alpha}|m\rangle\langle m| \tilde{j}^{\beta}|n\rangle . \tag{1}
\end{equation*}
$$

In this expression $\tilde{j}^{\alpha}=-e p^{\alpha} /(m V)$ with momentum p^{α} is an operator in the Schrödinger representation (in first quantization) and $f(\epsilon)$ is the Fermi-Dirac distribution function.

Hint: Remember, in second quantization the current operator is written as $j^{\alpha}(0)=\sum_{n m}\langle n| j^{\alpha}|m\rangle a_{n}^{\dagger} a_{m}$. You'll need the relation

$$
\begin{equation*}
\operatorname{Tr}\left[\rho a_{m}^{\dagger} a_{n} a_{p}^{\dagger} a_{q}\right]=\delta_{m q} \delta_{n p} f\left(\epsilon_{m}\right)\left(1-f\left(\epsilon_{n}\right)\right) \tag{2}
\end{equation*}
$$

Furthermore, express $\theta\left(t-t^{\prime}\right)=(\mathrm{i} / 2 \pi) \int_{-\infty}^{\infty} d x \exp \left(-\mathrm{i} x\left(t-t^{\prime}\right)\right) /\left(x+\mathrm{i} 0^{+}\right)$.
(b) (5P) The real part of the conductivity gives the dissipative contribution. Compute the real part of the longitudinal conductivity Eq. (1) in the DC limit, i.e.,

$$
\begin{equation*}
\operatorname{Re}\left[\sigma^{x x}(0)\right]=\frac{\pi e^{2}}{V m^{2}} \int_{-\infty}^{\infty} d E\left(-\frac{\partial f(E)}{\partial E}\right) \operatorname{Tr}\left[p^{x} \delta(E-H) p^{x} \delta(E-H)\right] \tag{3}
\end{equation*}
$$

2. Two Coupled Spins

Once again we use the Heisenberg model. However, this time we only consider two spin $1 / 2$ particles, $S_{1}=$ $S_{2}=1 / 2$, in an external magnetic field B :

$$
\begin{equation*}
H=-J\left(S_{1}^{+} S_{2}^{-}+S_{1}^{-} S_{2}^{+}+2 S_{1}^{z} S_{2}^{z}\right)-\frac{g_{J} \mu_{B} B}{\hbar}\left(S_{1}^{z}+S_{2}^{z}\right) \tag{4}
\end{equation*}
$$

A complete system of equations of motion is given by using the following (retarded or advanced) Green's functions:

$$
\begin{align*}
G_{11}\left(t, t^{\prime}\right) & =\left\langle\left\langle S_{1}^{-}(t) ; S_{1}^{+}\left(t^{\prime}\right)\right\rangle\right\rangle_{\epsilon=+} \tag{5}\\
G_{21}\left(t, t^{\prime}\right) & =\left\langle\left\langle S_{2}^{-}(t) ; S_{1}^{+}\left(t^{\prime}\right)\right\rangle\right\rangle_{\epsilon=+} \tag{6}\\
\Gamma_{12}\left(t, t^{\prime}\right) & =\left\langle\left\langle S_{1}^{z}(t) S_{2}^{-}(t) ; S_{1}^{+}\left(t^{\prime}\right)\right\rangle\right\rangle_{\epsilon=+} \tag{7}\\
\Gamma_{21}\left(t, t^{\prime}\right) & =\left\langle\left\langle S_{2}^{z}(t) S_{1}^{-}(t) ; S_{1}^{+}\left(t^{\prime}\right)\right\rangle\right\rangle_{\epsilon=+} \tag{8}
\end{align*}
$$

Show that the Green's functions can be written as

$$
\begin{equation*}
G_{11}(E)=\sum_{i=1}^{3} \frac{a_{i}}{E-E_{i}}, \quad G_{21}(E)=\sum_{i=1}^{3} \frac{b_{i}}{E-E_{i}} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{12}(E)-\Gamma_{21}(E)=\sum_{i=2}^{3} \frac{c_{i}}{E-E_{i}} \tag{10}
\end{equation*}
$$

Determine the coefficients a_{i}, b_{i} and c_{i}, which are functions of $\left\langle S_{1}^{z}\right\rangle=\left\langle S_{2}^{z}\right\rangle \equiv\left\langle S^{z}\right\rangle$ and $\rho_{12} \equiv\left\langle S_{1}^{+} S_{2}^{-}\right\rangle+2\left\langle S_{1}^{z} S_{2}^{z}\right\rangle$, and the poles E_{i}.

