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Antiferromagnetic Heisenberg Model [26P]

A spin S Heisenberg model on an arbitrary periodic D-dimensional lattice (coordination number z) is given
by

H = J
∑
〈mn〉

Sm · Sn, J > 0, S2
α |mα〉 = S(S + 1) |mα〉 , (1)

where 〈.〉 denotes the summation over nearest neighbors only, and mα the magnetic quantum number at site α.
In a system where S � 1 holds quantum fluctuations of the spin become less important (proof this statement by
considering Heisenberg’s uncertainty relation for |〈[Si, Sj ]〉|). The ground state under this condition (Néel state,
|Ne〉) is a staggered spin configuration, i.e., all neighboring spins are antiparallel. However, the true ground
state exhibits zero-point fluctuations so that the antiparallel configuration will only serve as a reference state
from which we start our analysis.

(a)(6P) First, we try to find the upper and lower bound for the ground state of a system with L sites.

– Calculate the upper bound by evaluating 〈Ne|H|Ne〉. Why can’t |Ne〉 be the ground state?

– For the lower bound, examine the interaction of Si with its z neighbors Sm, Hi = Si ·
∑
m Sm.

Rewrite Hi such that one can maximize (
∑
m Sm)2 and minimize the remaining term. Why

can’t this minimum be reached by the true ground state?

(b)(10P) Show that the antiferromagnon spectrum, by neglecting magnon-magnon interaction, is given by

ω(k) = JzS
√

1− γ2k, with γk =
1

z

∑
δ

eik·δ. (2)

To accomplish this you can apply the following steps: Define two kinds of Holstein-Primakoff bosons
(explain choice!):
On sublattice A

S+
Aj =

√
2S

(
1−

a†jaj

2S

)1/2

aj, S−Aj =
√

2Sa†j

(
1−

a†jaj

2S

)1/2

, (3)

on sublattice B

S−Bl =
√

2S

(
1−

b†l bl
2S

)1/2

bl, S+
Bl =

√
2Sb†l

(
1−

b†l bl
2S

)1/2

, (4)

where [ai, aj ] = [a†i , a
†
j ] = 0 and [ai, a

†
j ] = δij , accordingly for the operators of sublattice B. Thus,

our ansatz for each sublattice is equivalent to the case of ferromagnetic coupling.
Express the model Hamiltonian using this transformation and expand it assuming

〈a†jaj〉/S � 1. (5)



Neglect terms which are not bilinear in the magnon operators, i.e., neglect magnon-magnon interac-

tions. Apply a Fourier transformation, aj
FT→ ck, bj

FT→ dk, (a†j
FT→ c†k, b

†
j
FT→ d†k). (Assume the reduced

Brillouin zone to contain L/2 k-vectors.) Show that this leads to

H0 = JzS
∑
k

(γk(ckd−k + d†kc
†
−k) + (c†kck + d†kdk)). (6)

Rewrite H0 in a symmetrized form consisting of two parts (2/(zJS))H0 =
∑

kH
(1)
k +

∑
kH

(2)
k with

H
(1)
k containing operators of sublattice A only with (k) index and operators of sublattice B only

with (−k) index and accordingly for H(2). Show that the Bogoliubov transformation,

αk = ukck − vkd†−k, α†k = ukc
†
k − vkd−k (7)

brings H
(1)
k to diagonal form. Why is the condition u2k − v2k = 1 necessary? Apply a corresponding

procedure to H
(2)
k with new operators βk, β

†
k and express, finally, H0 in this new basis.

(c)(4P) What is the long-wavelength limit of the spectrum? Connect this finding with the Goldstone theo-
rem1.

(d)(6P) Calculate the staggered magnetization density

m =
1

L

〈∑
i∈A

Szi −
∑
j∈B

Szj

〉
. (8)

Show that for the one-dimensional Heisenberg model quantum fluctuations destroy the antiferro-
magnetic long-range order for any finite spin S. Hint: Express the sum over k as an integral.
What is the effect in D = 3 for a simple cubic lattice?

1When a continuous symmetry is spontaneously broken, a massless boson appears (gapless in relation to the vacuum).


