Quantum Theory of Condensed Matter I

Prof. John Schliemann
Dr. Paul Wenk, M.Sc. Martin Wackerl
Mo. 08:00-10:00 c.t., PHY 5.0.21

Sheet 4

1. Simple Fermion-Boson Model . [5P]

A simple Hamiltonian which contains a coupling between fermions (electrons) and bosons (phonons) is written as

$$
\begin{equation*}
H=\epsilon c^{\dagger} c+M\left(b^{\dagger}+b\right) c^{\dagger} c+\omega b^{\dagger} b \tag{1}
\end{equation*}
$$

where the fermion and boson annihilation(creation) operators are represented by $c\left(c^{\dagger}\right)$ and $b\left(b^{\dagger}\right)$, respectively. The Fock-space is spanned by the states $\left|n_{f}, n_{b}\right\rangle$ where $n_{f} \in\{0,1\}$ is the fermion and $n_{f} \in\{0,1,2, \cdots\}$ the boson occupation number. Obviously, the Fock-space decomposes into two subspaces for $n_{f}=0$ and $n_{f}=1$.
a)(3P) Write down the matrix representation with respect to $\left|n_{f}, n_{b}\right\rangle$ in both subspaces.
b) (2P) Diagonalize the Hamiltonian analytically by completing the square, i.e., rewrite it in the form

$$
\begin{equation*}
H=\tilde{\epsilon} c^{\dagger} c+\omega \tilde{b}^{\dagger} \tilde{b} \tag{2}
\end{equation*}
$$

Proof that $\tilde{b}\left(\tilde{b^{\dagger}}\right)$ still fulfills the commutator relations and compute the energy eigenvalues.
2. Coulomb Interaction

Assuming only intra-atomic Coulomb interaction, we can write the interaction part as

$$
\begin{equation*}
H_{\mathrm{int}}=\frac{1}{2} \sum_{i \sigma \sigma^{\prime}} \sum_{\mu \mu^{\prime} \nu \nu^{\prime}} V\left(\mu \nu ; \mu^{\prime} \nu^{\prime}\right) c_{i \mu \sigma}^{\dagger} c_{i \nu \sigma^{\prime}}^{\dagger} c_{i \nu^{\prime} \sigma^{\prime}} c_{i \mu^{\prime} \sigma} \tag{3}
\end{equation*}
$$

with the site index i and the band indices μ, ν, μ^{\prime}, and ν^{\prime}. A further restriction is applied on the scattering which is taken only between two bands and considering only direct terms $\left(U_{\mu \nu}:=V(\mu \nu ; \mu \nu)\right)$ and exchange terms $\left(J_{\mu \nu}:=V(\mu \nu ; \nu \mu)\right)$, leaving us with

$$
\begin{equation*}
\tilde{H}_{\mathrm{int}}=\frac{1}{2} \sum_{i \sigma \sigma^{\prime}} \sum_{\mu \nu}\left(\left(1-\delta_{\mu \nu} \delta_{\sigma \sigma^{\prime}}\right) U_{\mu \nu} n_{i \mu \sigma} n_{i \nu \sigma^{\prime}}+\left(1-\delta_{\mu \nu}\right) J_{\mu \nu} c_{i \mu \sigma}^{\dagger} c_{i \nu \sigma^{\prime}}^{\dagger} c_{i \mu \sigma^{\prime}} c_{i \nu \sigma}\right) \tag{4}
\end{equation*}
$$

Show that $\tilde{H}_{\text {int }}$ can be split into $\tilde{H}_{\text {int }}=H_{U}+H_{\text {dir }}+H_{\text {ex }}$ with

$$
\begin{align*}
H_{U} & =\frac{1}{2} \sum_{i \sigma} \sum_{\mu} U_{\mu \mu} n_{i \mu \sigma} n_{i \mu(-\sigma)} \tag{5}\\
H_{\mathrm{dir}} & =\frac{1}{2} \sum_{i \mu \nu}^{\mu \neq \nu}\left(U_{\mu \nu}-\frac{1}{2} J_{\mu \nu}\right) n_{i \mu} n_{i \nu} \quad \text { with } \quad n_{i \mu}=\sum_{\sigma} n_{i \mu \sigma} \tag{6}\\
H_{\mathrm{ex}} & =-\frac{1}{\hbar^{2}} \sum_{i \mu \nu}^{\mu \neq \nu} J_{\mu \nu} \mathbf{s}_{i \mu} \cdot \mathbf{s}_{i \nu} \quad \text { with } \quad \mathbf{s}=\frac{\hbar}{2} \boldsymbol{\sigma}, \quad \boldsymbol{\sigma}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\} \tag{7}
\end{align*}
$$

3. Hubbard Model

One of the simplest models which allows a study of an interplay between the kinetic energy, the Coulomb interaction, and Fermionic statistics is the Hubbard model. ${ }^{1}$ The corresponding Hamiltonian $H=H_{t}+H_{U}$ consisting of a hopping term

$$
\begin{equation*}
H_{t}=-t \sum_{\langle i j\rangle \sigma} c_{i \sigma}^{\dagger} c_{j \sigma} \tag{8}
\end{equation*}
$$

and the interaction term (see Eq. 5, here for one band)

$$
\begin{equation*}
H_{U}=\frac{1}{2} U \sum_{i \sigma} n_{i \sigma} n_{i(-\sigma)} \tag{9}
\end{equation*}
$$

with the operator $c_{i \sigma}^{\dagger}$ creating an electron on site i with spin $\sigma=\{1 \equiv \uparrow\},\{-1 \equiv \downarrow\}$ and $n_{i \sigma}$ the corresponding particle number operator.
and
a)(3P) Show that H possesses spin-rotational invariance by rewriting H_{U} in the form

$$
\begin{equation*}
H_{U}=\frac{U N}{2}-\frac{2 U}{3} \sum_{i} \mathbf{S}_{i}^{2}, \quad \text { with } N \text { the number of spins. } \tag{10}
\end{equation*}
$$

Explain the statement " H_{U} wants as many uncompensated spins as possible".
b)(3P) In the following, we analyze a system of two quantum dots A and B. This system is filled with two electrons (half-filling due to the spin degree of freedom). Represent H in the basis of states given by all possible electron configurations $\{\{\uparrow \downarrow-\},\{\uparrow \downarrow\}, \ldots\}$ for both electrons and the two sites $\{A, B\}$.
c)(3P) Show that $S_{z}=(1 / 2) \sum_{j}\left(n_{j \uparrow}-n_{j \downarrow}\right)$ is a conserved quantity and use this finding to explain the block-diagonal structure of the represented Hamiltonian. To simplify the representation, check the parity of the basis states using the orbital parity operator \hat{P} (Majorana operator), which is given by $\hat{P} c_{x, \sigma}^{\dagger} c_{x^{\prime}, \sigma^{\prime}}^{\dagger}|0\rangle=c_{f(x), \sigma}^{\dagger} c_{f\left(x^{\prime}\right), \sigma^{\prime}}^{\dagger}|0\rangle$ with $f(A)=B, f(B)=A$. Not all basis states defined in a) are eigenstates of \hat{P}. Find a basis with elements of well defined parity P.
d)(3P) Diagonalize H. What is the ground state (singlet/triplet) and how large is the energy gap to the first excited state?

[^0]
[^0]: ${ }^{1}$ J. Hubbard, Proc. R. Soc. London A276, 238 (1963), J. Kanamori, Progr. Theor. Phys. A30, 275 (1963), M. C. Gutzwiller, Phys. Rev. Lett. A10, 59 (1963)

