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1. Simple Fermion-Boson Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [5P]

A simple Hamiltonian which contains a coupling between fermions (electrons) and bosons (phonons) is written
as

H = ε c†c+M(b† + b)c†c+ ωb†b, (1)

where the fermion and boson annihilation(creation) operators are represented by c(c†) and b(b†), respectively.
The Fock-space is spanned by the states |nf , nb〉 where nf ∈ {0, 1} is the fermion and nf ∈ {0, 1, 2, · · · } the
boson occupation number. Obviously, the Fock-space decomposes into two subspaces for nf = 0 and nf = 1.

a)(3P) Write down the matrix representation with respect to |nf , nb〉 in both subspaces.

b)(2P) Diagonalize the Hamiltonian analytically by completing the square, i.e., rewrite it in the form

H = ε̃ c†c+ ωb̃†b̃. (2)

Proof that b̃(b̃†) still fulfills the commutator relations and compute the energy eigenvalues.

2. Coulomb Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [8P]

Assuming only intra-atomic Coulomb interaction, we can write the interaction part as

Hint =
1

2

∑
iσσ′

∑
µµ′νν′

V (µν;µ′ν′)c†iµσc
†
iνσ′ciν′σ′ciµ′σ, (3)

with the site index i and the band indices µ, ν, µ′, and ν′. A further restriction is applied on the scattering
which is taken only between two bands and considering only direct terms (Uµν := V (µν;µν)) and exchange
terms (Jµν := V (µν; νµ)), leaving us with

H̃int =
1

2

∑
iσσ′

∑
µν

((1− δµνδσσ′)Uµνniµσniνσ′ + (1− δµν)Jµνc
†
iµσc

†
iνσ′ciµσ′ciνσ). (4)

Show that H̃int can be split into H̃int = HU +Hdir +Hex with

HU =
1

2

∑
iσ

∑
µ

Uµµniµσniµ(−σ), (5)

Hdir =
1

2

µ6=ν∑
iµν

(
Uµν −

1

2
Jµν

)
niµniν with niµ =

∑
σ

niµσ, (6)

Hex = − 1

~2

µ6=ν∑
iµν

Jµνsiµ · siν with s =
~
2
σ, σ = {σx, σy, σz}. (7)



3. Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [10P]

One of the simplest models which allows a study of an interplay between the kinetic energy, the Coulomb
interaction, and Fermionic statistics is the Hubbard model.1 The corresponding Hamiltonian H = Ht + HU

consisting of a hopping term

Ht = −t
∑
〈ij〉σ

c†iσcjσ (8)

and the interaction term (see Eq. 5, here for one band)

HU =
1

2
U
∑
iσ

niσni(−σ), (9)

with the operator c†iσ creating an electron on site i with spin σ = {1 ≡↑}, {−1 ≡↓} and niσ the corresponding
particle number operator.

and

a)(3P) Show that H possesses spin-rotational invariance by rewriting HU in the form

HU =
UN

2
− 2U

3

∑
i

S2
i , with N the number of spins. (10)

Explain the statement “HU wants as many uncompensated spins as possible“.

b)(3P) In the following, we analyze a system of two quantum dots A and B. This system is filled with two
electrons (half-filling due to the spin degree of freedom). Represent H in the basis of states given
by all possible electron configurations {{↑↓−− −−}, { ↑−− ↓−−}, . . .} for both electrons and the two sites
{A,B}.

c)(3P) Show that Sz = (1/2)
∑
j(nj↑ − nj↓) is a conserved quantity and use this finding to explain the

block-diagonal structure of the represented Hamiltonian. To simplify the representation, check the
parity of the basis states using the orbital parity operator P̂ (Majorana operator), which is given

by P̂ c†x,σc
†
x′,σ′ |0〉 = c†f(x),σc

†
f(x′),σ′ |0〉 with f(A) = B, f(B) = A. Not all basis states defined in a)

are eigenstates of P̂ . Find a basis with elements of well defined parity P .

d)(3P) Diagonalize H. What is the ground state (singlet/triplet) and how large is the energy gap to the
first excited state?
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