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1. Electronic Band Structure Within the Tight Binding Model . . . . . . . . . . . . . [10P]

The tight-binding model is typically used for calculations of the electronic band structure in presence of a
periodic potential. When an atom is placed in a crystal, the atomic wave functions overlap adjacent atomic
sites, and so are not true eigenfunctions of the crystal Hamiltonian. The overlap is less when electrons are
tightly bound, which is the source of the descriptor ”tight-binding”.

The Hamiltonian describing the electron motion in a crystal can be written as

H =
p2

2m
+
∑
R

U(r−R) and Hat
R =

p2

2m
+ U(r−R), (1)

where m is the free electron mass and Hat
R the Hamiltonian of an isolated atom placed on site R with potential

U(r−R). Now, the small perturbation is given by ∆U(r−R), defined by H = Hat
R + ∆U(r−R).

(a)(2P) The solution ψα,k(r) to the time-independent single electron Schrödinger equation with the Hamil-
tonian H can be approximated as a linear combination of atomic orbitals ϕα(r−R) which are the
eigenstates of Hat (here α is a set of quantum numbers) with Hat

Rϕα(r−R) = Eαϕα(r−R). Show
that ψα,k(r) which is given by

ψα,k(r) =
1√
N

∑
R

exp(ik ·R)ϕα(r−R) (2)

is of the Bloch form. Here, N is the number of atoms in the system.

(b)(4P) A good approximation for the eigenvalues of H is given by the Ritz method

εα(k) =

∫
d3r ψ∗α,k(r)Hψα,k(r)∫
d3r ψ∗α,k(r)ψα,k(r)

. (3)

Show that εα(k) can be written in the tight-binding model as

εα(k) = Eα +
I1 +

∑
R6=0 e

−ik·RI2(R)

1 +
∑

R 6=0 e
−ik·RI3(R)

(4)

with

I1 =

∫
d3r ϕ∗α(r)

∑
R6=0

U(r−R)ϕα(r), (5)

I2(R) =

∫
d3r ϕ∗α(r−R)U(r−R)ϕα(r), (6)

I3(R) =

∫
d3r ϕ∗α(r−R)ϕα(r). (7)

Hint: Eq. 3 contains integrands of the form ϕ∗α(r−R2)U(r−R3)ϕα(r−R1). Assume, that contri-
butions from integrands with R1 6= R2 6= R3 6= R1 (three center integrals) can be neglected.

(c)(4P) Instead of atomic wave functions, use Wannier states to calculate the spectrum of a simple cubic
crystal within the nearest neighbor approximation. Assume only s-bands so that the index α can
be dropped. Calculate the effective electron mass for small k.



2. Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [10P]

In graphene each carbon atom has three neighbours.
Three electrons of a carbon atom are bound by a cova-
lent σ-bond. The fourth electron is delocalized in the
π-band and can propagate through the lattice. Every
carbon atom contributes one electron to the π-band,
which is therefore half-filled. We describe the system
of delocalized electrons by the following Hamiltonian
which includes only nearest neighbour hopping,

H = t
∑
〈r,r′〉,σ

(c†r,σcr′,σ + c†r′,σcr,σ)

where t is the hopping amplitude (overlap integral),
〈r, r′〉 are neighbouring sites and c†r,σ (cr,σ) the cre-
ation (annihilation) operator of an electron on site r
with spin σ in a Wannier state.

(a)(2P) Write down the primitive vectors of the spatial (a1,a2) and reciprocal lattice (b1,b2).

(b)(2P) Show the first Brillouin zone for this kind of lattice.

(c)(4P) Diagonalize the tight-binding Hamiltonian H and plot the energy spectrum. Why has graphene
semimetallic properties?
Hint: Fourier-transform H into k-space and distinguish between the two different sublattices.

(d)(2P) Calculate the effective mass and Fermi velocity for Bloch electrons close to the corner of the first
Brillouin zone with kx = 4π

3
√
3a

and ky = 0. Here, a is the interatomic distance. Expand the

dispersion relation in terms of kx,ya until the first non-zero order.


